

Software and hardware requirements to complete all exercises.

Requirements: Install all software as required in the installation Guide.

 AXE5-Eagle Create a Linux Boot Image

Document Control

Document Version: Version 1.3

Document Date: 06/22/2025

Document Author(s): Steven Kravatsky, Erika Peter, Naji Naufel, Fue Xiong, Helmut

Ploetz, Henry Alexander, Mark Travaglini, ESC Team

Document

Classification:

Released

Document

Distribution:

This document is still under development. All specifications,

procedures, and processes described in this document are

subject to change without prior notice

Prior Version History: Version 1.2

Please read the legal disclaimer at the end of this document.

 AXE5-Eagle Create a Linux Boot Image

3

Page | 3 arrow.com

Contents

1 Introduction ... 6

1.1 Readers Guide ... 6

1.2 Definitions ... 7

2 Getting Started .. 9

3 Agilex™ 5 SoC FPGAs ... 10

3.1 Agilex 5 Family of Devices ...10

3.1.1 E Series, Group B ...10

3.1.2 E Series, Group A ...11

3.1.3 D Series ..11

3.2 Agilex™ 5 SoC FPGA Architecture ..12

3.2.1 The Secure Device Manager (SDM) ..12

3.2.2 MPU Cluster ...13

3.2.3 HPS/FPGA Bridges ..13

3.3 AXE5-Eagle Golden System Reference Design (GSRD) ..14

3.4 AXE5-Eagle Golden Hardware Reference Design (GHRD) ...14

3.5 Agilex 5 SoC FPGA Boot Overview..17

3.5.1 FPGA Configuration First Mode ...17

3.5.2 HPS Boot First Mode ..18

3.5.3 FPGA Configuration First Mode – Detail ..18

3.6 System Layout for HPS Boot First Mode ..22

3.6.1 Dual Flash System..22

3.7 The HPS Boot Flow ..22

3.8 The HPS Boot Sequence ...25

3.8.1 Exception Levels...25

3.8.2 Arm Trustzone ..26

3.8.3 Arm Trusted Firmware (ATF), Boot Loader Stage 3-1 (BL31) ...29

4 HPS Customization ... 31

4.1 HPS FPGA Interfaces ...33

4.1.1 FPGA to SDRAM Bridge (F2SDRAM) ..34

4.1.2 Lightweight HPS to FPGA Bridge (LWH2F) ...35

4.1.3 HPS to FPGA Bridge (H2F) ..36

4.1.4 FPGA to HPS Bridge (F2H) ..36

4.2 HPS Clocks, Resets, Power ...38

4.2.1 Input Clocks ..38

4.2.2 PLL Clocks ..38

4.2.3 Power & Resets ..39

 AXE5-Eagle Create a Linux Boot Image

4.3 Pin Mux and Peripherals ..39

4.3.1 Advanced IP Placement ...40

4.3.2 Advanced FPGA Placement ...42

5 Creating a Bootable Image .. 43

5.1 Code repositories ...45

5.2 Launch the Oracle VirtualBox Linux Virtual Machine ...46

5.2.1 Launch the VirtualBox based Ubuntu 22.04 LTS Virtual Machine.46

5.2.2 Copy and paste guide ...46

5.2.3 Host password ..47

5.2.4 VirtualBox Menu Bar ...47

5.3 Setup the build environment ...47

5.4 Arm Trusted Firmware (BL31) ..47

5.5 U-boot ...48

5.5.1 defconfig ...48

5.5.2 Devicetree ...48

5.5.3 Compile U-boot ...49

5.6 Linux ...51

5.6.1 defconfig ...51

5.6.2 Devicetree ...51

5.6.3 Compile Linux ...51

5.7 Create a Linux Root File System (rootfs) with Yocto..53

5.8 Create the FPGA Configuration Bitstream Image ..54

5.9 Create the SD Card Image ...56

5.9.1 Write the SD Card image ..57

5.10 Configure the board ..59

5.10.1 Configure the MSEL DIP Switches ...59

5.10.2 Assemble the Hardware ...59

5.11 Connect to the target terminal ...60

5.12 Boot the Linux Image ..60

5.12.1 Enable the Arrow Blaster in the VirtualBox VM ..60

5.12.2 Download the FPGA configuration file ..61

5.12.3 Download the SOF file ..62

5.13 View the Linux Boot Log ...62

5.14 Turn RGB LEDs On and Off ...64

5.14.1 Access the LEDS from Linux using devmem2 ...66

5.14.2 Specify each LED in Linux as a device ..66

5.14.3 Defining the RGB LEDs as devices on the AXE5-Eagle board ..67

5.14.4 Access the LEDS from Linux as devices ..69

 AXE5-Eagle Create a Linux Boot Image

5

Page | 5 arrow.com

6 Additional Resources .. 70

7 Legal Disclaimer .. 71

 AXE5-Eagle Create a Linux Boot Image

1 Introduction

This lab provides comprehensive information showing the steps that an Agilex™ 5 SoC

FPGA takes from power on to booting the Linux operating system.

You will review

• The architecture of the Agilex 5 SoC FPGA

• The AXE5-Eagle Golden System Reference Design (GSRD)

• The AXE5-Eagle Golden Hardware Reference Design (GHRD)

• The Agilex 5 SoC FPGA Configuration modes

• The HPS Boot flow

• The Linux Boot log from a successful boot sequence.

You will learn

• How to customize the Hard Processing System (HPS)

• About the different boot stages that the Secure Device Manager (SDM) and the

HPS transition through to reach the Linux prompt.

• About the software required for the HPS Boot flow

• How to source and compile each of these software components.

• How to create a bootable Linux image.

• How to create a custom, flashable, FPGA image required by the SDM.

• How to run the bootable Linux image on an AXE5-Eagle board.

1.1 Readers Guide

If you are new to Agilex™ 5 SoC FPGAs and building Embedded Linux images, it is

recommended that all sections of this document are read. Portions of section 3 and 4

can be disregarded depending on the readers’ familiarity with the topic.

 AXE5-Eagle Create a Linux Boot Image

7

Page | 7 arrow.com

Abbreviations are referenced throughout the lab document. Use the list below for

expansions/definitions of these abbreviations.

1.2 Definitions

ARM Originally an abbreviation of Acorn RISC Machines

ARMv7-A ARM version 7 for 32-bit Cortex A architecture devices

ARMv8-A ARM version 8 for 64-bit Cortex A architecture

devices

ATF Arm Trusted Firmware

BL31 ATF Boot Loader section 3-1

CMF Configuration Management Firmware

CPU Central Processing Unit

DSU ARM DynamicIQ Shared Unit

DTB Device Tree Blob, binary version of Device Tree source

ECC Error Checking and Correction

EL1, EL2, EL3,

EL4

ARM Exception Levels 1 to 4

EMAC Ethernet Media Access Controller

EMIF External Memory Interface

eMMC Embedded Multi Media Card

EOSC External Oscillator

F2H FPGA to HPS

F2SDRAM FPGA to SDRAM

FAT File Allocation Table

FIT Flattened Image Tree

FIQ Fast Interrupt Request

FPGA Field Programmable Gate Array

FSBL First Stage Boot Loader

GB Giga Byte

GHRD Golden Hardware Reference Design

GIC Generic Interrupt Controller

GPIO General Purpose Input Output

GSRD Golden System Reference Design

H2F HPS to FPGA

HPS Hard Processing System

IO Input Output

IP Intellectual Property

ITS Image Tree Source

ITB Image Tree Blob, binary version of ITS

JIC JTAG Indirect Configuration

JTAG Joint Test Action Group

 AXE5-Eagle Create a Linux Boot Image

KB Kilo Byte

L1, L2, L3 Level 1,2 or 3 cache memory

LPDDR4 Low Power DDR4

LSM SDM Local Sector Manager

LWH2F Lightweight HPS to FPGA

LZMA Lempel-Ziv-Markov chain Algorithm

make Utility to control the generation of executable code

MB Mega Byte

mkimage Utility used to create images for use with U-boot

MPU Micro Processor Unit

MUX Multiplexer

NS Non-secure

OS Operating System

OTG On The Go

PDD Platform Design Document

PSCI Power State Coordination Interface

PLL Phase Lock Loop

POR Power On Reset

QSPI Quad Serial Peripheral Interface

RAM Random Access Memory

ROM Read Only Memory

SD Secure Digital

SDM Secure Device Manager

SDRAM Synchronous Dynamic Random Access Memory

SOC System on Chip

SEU Single Event Upset

SPI Serial Peripheral Interface

SPIM SPI Master

SPL Secondary Program Loader

SSBL Second Stage Boot Loader

TBBR Trusted Board Boot Requirements

TEE Trusted Execution Environment

UART Universal Asynchronous Receiver Transmitter

UIMG U-boot Image

 AXE5-Eagle Create a Linux Boot Image

9

Page | 9 arrow.com

2 Getting Started

The first objective is to ensure that you have all the necessary items so that the lab can

be completed successfully. Below is a list of items required to complete this lab:

• Personal computer or laptop running 64-bit Windows 10 or later with at least an

Intel i3 core (or equivalent), 8GB RAM.

• The build environment will be provided on a VirtualBox Virtual Machine, running

Ubuntu Linux 22.04 LTS. Refer to the installation guide for details.

• A desire to learn!

 AXE5-Eagle Create a Linux Boot Image

3 Agilex™ 5 SoC FPGAs

3.1 Agilex 5 Family of Devices

Figure 3-1 : Agilex 5 Family of Devices

Three major variants are offered in the Agilex 5 Product family.

• D series

• E Series, Group A

• E Series, Group B

3.1.1 E Series, Group B

Power Optimized FPGA with IO Only- these are the smallest devices in the family that

are meant for the most power efficient applications. These will have IO only- no ARM

processor or transceivers.

Power Optimized FPGA with HPS - these devices will have a quad core ARM option

and 17G transceivers. These devices are for mid-range applications that will need an

ARM processor and other peripherals.

 AXE5-Eagle Create a Linux Boot Image

11

Page | 11 arrow.com

3.1.2 E Series, Group A

Performance Optimized FPGA with HPS - These are the highest-performance devices

in the E Series family. These devices have a higher fabric speed and a 28G transceiver

option, along with the quad core ARM processor.

3.1.3 D Series

Performance Optimized FPGA with HPS - These are the highest-performance devices

in this family. These devices have the highest fabric speed, highest external memory

speeds and a 28G transceiver option, along with the quad core ARM processor.

The AXE5-Eagle board uses an E -series, group B device that includes a quad core

ARM and transceivers.

 AXE5-Eagle Create a Linux Boot Image

3.2 Agilex™ 5 SoC FPGA Architecture

The Agilex™ 5 system-on-a-chip (SoC) is composed of two distinct portions: a dual-

core Arm Cortex-A76 and dual-core Arm Cortex-A55 Hard Processor System (HPS),

and a FPGA. The HPS architecture integrates a wide set of peripherals that reduces

board size and increases performance within a system. A short description of some

key sections of the HPS is provided below.

Figure 3-2 : Agilex 5 Architecture

3.2.1 The Secure Device Manager (SDM)

All Agilex™ 5 FPGAs and SoCs contain an SDM. The SDM is a triple-redundant

processor that serves as the point of entry into the device for all JTAG and

configuration commands.

The SDM bootstraps the HPS in Agilex™ 5 SoCs. This bootstrapping ensures that the

HPS boots using the same security features available to the FPGA.

 AXE5-Eagle Create a Linux Boot Image

13

Page | 13 arrow.com

3.2.2 MPU Cluster

The MPU Cluster includes the following features:

• Two Arm Cortex-A55 core with 32 KB L1 instruction cache and data cache per

core and a unified 128 KB L2 cache per core

• Two Arm Cortex-A76 core with 64 KB L1 instruction cache and data cache per

core and a unified 256 KB L2 cache per core

• DSU with 2 MB L3 cache

• Hardware cache coherency maintained using the L3 memory system

• ECC support for L1, L2 and L3 memories

• Static power-gated domains for Cortex-A55 and Cortex-A76 cores

3.2.3 HPS/FPGA Bridges

Bridges are used to move data between the FPGA fabric and HPS logic.

The Lightweight-to-FPGA (LWH2F) bridge extends the HPS peripherals to the FPGA

like the H2F. However, the LWH2F is meant for a narrower (32-bit data bus) use case

involving simple peripherals on the FPGA, where latency is prioritized over

bandwidth. The LWH2F bridge is meant for strongly ordered single transactions.

This allows usage of the LWH2F as the configuration bus for FPGA IPs. The FPGA IP

can then make use of H2F or F2H/F2SDRAM as the main data mover bus.

The HPS-to-FPGA (H2F) bridge extends the HPS peripherals to the FPGA. Additional

IPs implemented on FPGA can be used as part of the HPS subsystem. The H2F bridge

can also be connected to another 256GB of FPGA SDRAM, extending the amount of

physical memory available to HPS.

The FPGA-to-HPS (F2H) bridge provides a way for initiators (IPs, accelerators) in the

fabric to access HPS peripherals, which makes the peripherals extensions of the

FPGAsystem.

The FPGA-to-SDRAM (F2SDRAM) bridge provides the asynchronous clock domain

crossing logic for the F2SDRAM port from the fabric. The primary traffic is

transactions to the DRAM subsystems from all the fabric agents.

 AXE5-Eagle Create a Linux Boot Image

3.3 AXE5-Eagle Golden System Reference Design (GSRD)

The AXE5-Eagle Golden System Reference Design is a thoroughly tested known good

design showcasing a system using both HPS and FPGA resources, intended to be used

as a baseline project.

The GSRD is comprised of the following components:

• Golden Hardware Reference Design (GHRD)

• Reference HPS software including:

o Arm Trusted Firmware

o U-Boot

o Linux Kernel

o Linux drivers

o Sample applications

The current GSRD uses FPGA-First configuration mode.

3.4 AXE5-Eagle Golden Hardware Reference Design (GHRD)

The AXE5-Eagle GHRD, part of the AXE5-Eagle Golden System Reference Design

(GSRD), is an Intel® Quartus® Prime project that contains a full HPS design for

the Arrow AXE5-Eagle board. The GHRD has connections to a boot source, SDRAM

memory and other peripherals on the development board.

You must always use a hardware design with the Intel® Agilex™ SoC if you choose to

take advantage of the HPS features. The purpose of the hardware design is to

configure the SoC, including the FPGA portion, the HPS pin multiplexers and I/Os, and

the SDRAM. All software projects depend on a hardware design.

The GHRD is regression tested with every major release of the Quartus Prime Design

Suite (QPDS) and includes the latest bug fixes for known hardware issues. As such,

the GHRD serves as a well-known configuration of a SoC FPGA hardware system.

GUIDELINE: Use the latest GHRD as a baseline for new SoC FPGA hardware projects.

You may then modify the design to suit your end application needs.

 AXE5-Eagle Create a Linux Boot Image

15

Page | 15 arrow.com

A block diagram of the GHRD is shown in figure 3-3 below. The design is constructed

using the Altera Platform Designer tool. The GHRD is constructed as a hierarchical

design. The GHRD represents the top level, with a number of subsystems.

Figure 3-3 : GHRD Block Diagram

 AXE5-Eagle Create a Linux Boot Image

The following subsystems are included in the GHRD:

• Board

o Board level reset and clock inputs

• Clock

o Includes a Phase Lock Loop that generates clocks for all clock domains

in the design. Each clock has an associated, synchronous reset.

• HPS

o This subsystem includes the customized HPS section, the HPS EMIF

controller and a JTAG interface for use with System Console.

• EMIF

o This subsystem adds an additional EMIF controller. This can be

mastered from the FPGA fabric or from the HPS.

• Peripheral

o This is a collection of FPGA fabric GPIO peripherals used for controlling

LEDs and reading pushbutton and DIP switch inputs. It also includes

two GPIOs used for releasing the Ethernet PHY and USB PHY from

reset.

• Ethernet

o An additional HPS EMAC is routed through the FPGA and connected to

the second set of ethernet hardware on the board.

• Video

o The AXE5-Eagle includes an ADV7511 HDMI PHY output device. This

can be used by a Nios V soft processor or the HPS ARM cores running

Linux. It can be used to provide a graphical desktop for Linux in

conjunction with a USB keyboard and mouse. The subsystem includes a

DMA used for reading video from a framebuffer and writing it to an

HDMI peripheral. The HDMI peripheral manipulates the raw video data

into a format compatible with the ADV7511 PHY.

The GHRD top level in Platform Designer can be viewed in Figure 3-4.

 AXE5-Eagle Create a Linux Boot Image

17

Page | 17 arrow.com

Figure 3-4 : GHRD Top level view in Platform Designer

3.5 Agilex 5 SoC FPGA Boot Overview

The Agilex 5 SoC FPGA combines an FPGA with a hard processor system (HPS) that is

capable of booting operating systems such as Linux and Zephyr. When booting the

device from a power-on reset (POR), you can choose between two different methods

of booting.

3.5.1 FPGA Configuration First Mode

When you select the FPGA First option, the SDM fully configures the FPGA, then

configures the HPS IO and HPS EMIF controller, loads the HPS first-stage bootloader

(FSBL) and takes the HPS out of reset. Note: The FPGA and all of the IOs are fully

configured before the HPS is released from reset. Thus, when the HPS boots, the

FPGA is in user mode and is ready to interact with the HPS.

 AXE5-Eagle Create a Linux Boot Image

3.5.2 HPS Boot First Mode

When you select the HPS First option, the SDM first configures the HPS IO and HPS

EMIF controller, loads the HPS FSBL and takes the HPS out of reset. Then the HPS

configures the FPGA IO and FPGA fabric at a later time. Note: This mode is also

referred to as Early IO Release Mode or Early IO Configuration. After power-on, the

device configures a minimal amount of IO required by the HPS before releasing the

HPS from reset. This mode allows the HPS to boot quickly without having to wait for

the full configuration to complete. Subsequently, the HPS may trigger an FPGA

configuration request during the SSBL or OS stage.

The GSRD currently uses the HPS Boot First Mode.

3.5.3 FPGA Configuration First Mode – Detail

Figure 3-4 shows the boot stages of the Agilex 5 device from POR all the way to a

user application running on an operating system.

Table 1 provides more detail on each boot stage.

Figure 3-5 : HPS First Boot Flow

 AXE5-Eagle Create a Linux Boot Image

19

Page | 19 arrow.com

Table 1 : FPGA Configuration First Stages

The sections following this table describe each stage in more detail.

3.5.3.1 Power-On Reset (POR)

Ensure you power each of the power rails according to the power sequencing

consideration until they reach the required voltage levels. In addition, the power-up

sequence must meet either the standard or the fast power-on reset (POR) delay time.

3.5.3.2 Secure Device Manager

The Secure Device Manager (SDM) is a triple-redundant processor-based module

that manages configuration and the security features of Agilex 5 devices. The SDM is

available on all Agilex 5 devices. The block diagram below provides an overview of

the Agilex 5 configuration architecture which includes the following blocks:

• SDM: More information about the SDM is contained in later sections.

 AXE5-Eagle Create a Linux Boot Image

• Configuration network: The SDM uses this dedicated, parallel configuration

network to distribute the configuration bitstream to Local Sector Managers

(LSMs). You cannot access this network.

• LSMs: The LSM is a microprocessor. Each configuration sector includes an LSM.

The LSM parses configuration bitstream and configures the logic elements for

its sector. After configuration, the LSM performs the following functions:

- Monitors for single event upsets at the sector level

- Processes responses to single event upsets (SEUs)

- Performs integrity checks in user mode

Figure 3-6 : Agilex 5 Configuration Architecture Block Diagram

Once the Agilex 5 SoC FPGA exits POR, the SDM samples the MSEL[2:0] pins to

determine the boot source. Next, the device configures the SDM I/Os according to the

selected boot source interface and the SDM retrieves the configuration bitstream

through the interface. The typical configuration bitstream for HPS boot first mode

contains:

• SDM configuration firmware HPS external memory interface (EMIF) I/O

configuration data HPS FSBL code and FSBL hardware handoff binary data

The SDM completes the configuration of the HPS EMIF I/O and then copies the HPS

FSBL to the HPS on-chip RAM.

3.5.3.3 First-Stage Bootloader

After the SDM releases the HPS from reset, the FSBL initializes the HPS. Initialization

includes configuring clocks, HPS dedicated I/Os, and peripherals.

 AXE5-Eagle Create a Linux Boot Image

21

Page | 21 arrow.com

In HPS first boot mode, the SDM, HPS OSC and HPS EMIF clocks must be running

stable and set at the correct frequency before you begin any part of the configuration

sequence.

In HPS first boot mode, phase 1 configuration is successful as long as HPS OSC and

HPS EMIF clocks are running stable.

You can create the FSBL from one of the following sources:

• U-Boot secondary program loader (SPL)

• Arm Trusted Firmware

3.5.3.4 Second-Stage Bootloader

The second-stage bootloader (SSBL) is the second boot stage for the HPS. The FSBL

initiates the copy of the SSBL to the HPS SDRAM. The SSBL typically enables more

advanced peripherals such as Ethernet and supports a command line interface.

You can create the HPS SSBL from one of the following sources:

• U-Boot secondary program loader (SPL)

• Arm Trusted Firmware

You can optionally perform FPGA core and I/O configuration in during the SSBL

stage. The SSBL copies the FPGA configuration files from one of the following

sources to the HPS SDRAM:

• HPS Flash

• SDM Flash

• External host via the HPS Ethernet (for example, TFTP)

After the SSBL copies the FPGA configuration files to the HPS SDRAM, the SSBL can

initiate a configuration request to the SDM to begin the configuration process.

3.5.3.5 Operating System

Typically, the SSBL loads the operating system (OS) stage into SDRAM. The OS

executes from SDRAM. Depending on your application requirements, you may

implement a conventional OS or an RTOS.

3.5.3.6 Application

The application that runs on the OS is the last boot stage.

 AXE5-Eagle Create a Linux Boot Image

3.6 System Layout for HPS Boot First Mode

The following section describes the supported system layout for HPS Boot First mode.

The OS is assumed to be Linux, but you may replace Linux with other supported

operating systems.

3.6.1 Dual Flash System

In a dual flash system, the SDM flash stores the configuration bitstream, while the

HPS flash stores the HPS SSBL and the rest of the OS files.

Table 2: Dual Flash Combination (SDM and HPS)

Figure 3-7 : Dual Flash Devices (SDM and HPS)

3.7 The HPS Boot Flow

The following section introduces the boot flows supported by the HPS.

There are 3 boot flows supported:

• U-Boot, ATF, Linux Boot

 AXE5-Eagle Create a Linux Boot Image

23

Page | 23 arrow.com

o U-Boot SPL ➤ ATF BL31 ➤ U-Boot ➤ Linux

• ATF, Linux Boot

o ATF BL2 ➤ ATF BL31 ➤ Linux

• ATF, Zephyr Boot

o ATF BL2 ➤ ATF BL31 ➤ Zephyr

U-Boot SPL is also known as the First Stage Boot Loader (FSBL).

ATF BL31 includes functionality known as the Secure Monitor.

U-Boot is also known as the Second Stage Boot Loader (SSBL).

The AXE5-Eagle board utilizes the U-Boot, ATF, Linux Boot flow.

The following figure shows the overview of the HPS Boot Flow using a U-Boot as HPS

Bootloader to boot to the Linux OS.

Figure 3-8 : HPS Boot flow

The boot flow is described in steps below:

• The Configuration Management Firmware (CMF), which is a part of the

configuration bitstream, running on the SDM loads the FSBL, which is U-Boot

SPL, into HPS On-Chip RAM and then brings the HPS boot core out from reset.

• The U-Boot SPL loads the SSBL, which is ATF BL31 and U-Boot proper (SSBL),

into DDR.

 AXE5-Eagle Create a Linux Boot Image

• The U-Boot SPL jumps to ATF BL31.

• ATF BL31 sets up the GIC, EL3 environment, and initializes the PSCI services.

PSCI services in ATF remain active or available once ATF jumps to U-Boot.

• ATF BL31 jumps to the U-Boot proper.

• U-Boot loads the Linux OS into the DDR.

• U-Boot jumps to the Linux OS.

• Note: U-Boot proper and the Linux OS can access the SDM FPGA features

through ATF BL31 through the Arm Secure Monitor Call (SMC).

 AXE5-Eagle Create a Linux Boot Image

25

Page | 25 arrow.com

3.8 The HPS Boot Sequence

To understand the HPS boot sequence it is important to understand the concept of

privilege and exception levels with respect to the Armv8-A (also known as AArch64)

processor architecture.

Modern software is developed to be split into different modules, each with a different

level of access to system and processor resources. An example of this is the split

between the operating system kernel and user applications. The operating system

needs to perform actions which we do not want a user application to be able to

perform. The kernel needs a high level of access to system resources, whereas user

applications need limited ability to configure the system. Privilege dictates which

processor resources a software entity can see and control.

The AArch64 architectures enable this split by implementing different levels of

privilege. The current privilege level can only change when the processor takes an

exception or returns from an exception. Therefore, these privilege levels are referred to

as Exception levels in the Arm architecture.

3.8.1 Exception Levels

The name for privilege in AArch64 is Exception level, often abbreviated to EL. The

Exception levels are numbered, normally abbreviated and referred to as EL<x>,

where <x> is a number between 0 and 3. The higher the level of privilege the higher

the number. For example, the lowest level of privilege is referred to as EL0.

Figure 3-9 : Exception Levels

The architecture does not specify what software uses which Exception level. A

common usage model is application code running at EL0, with a rich Operating

 AXE5-Eagle Create a Linux Boot Image

System (OS) such as Linux running at EL1. EL2 may be used by a hypervisor, with EL3

used by firmware and security gateway code.

For example, Linux can call firmware functions at EL3, using software interface

standards, to abstract the intent from the lower-level details for powering on or off a

core. This model means the bulk of PE processing typically occurs at EL0/1.

The Exception level can only change when any of the following occur:

• Taking an exception

• Returning from an exception

• Processor reset

• During Debug state

• Exiting from Debug state

When taking an exception, the Exception level can increase or stay the same. You can

never move to a lower privilege level by taking an exception. When returning from an

exception the Exception level can decrease or stay the same. You can never move to

a higher privilege level by returning from an exception.

3.8.2 Arm Trustzone

TrustZone is the name of the Security architecture in the Arm A-profile architecture.

First introduced in Armv6K, TrustZone is also supported in Armv7-A and Armv8-A.

TrustZone provides two execution environments with system-wide hardware

enforced isolation between them, as shown in this diagram:

Figure 3-10 : Normal and Trusted worlds

3.8.2.1 Normal and Trusted worlds

The Normal world runs a rich software stack. This software stack typically includes a

large application set, a complex operating system like Linux, and possibly a

hypervisor. Such software stacks are large and complex. While efforts can be made to

 AXE5-Eagle Create a Linux Boot Image

27

Page | 27 arrow.com

secure them, the size of the attack surface means that they are more vulnerable to

attack.

The Trusted world runs a smaller and simpler software stack, which is referred to as a

Trusted Execution Environment (TEE). Typically, a TEE includes several Trusted

services that are hosted by a lightweight kernel. The Trusted services provide

functionality like key management. This software stack has a considerably smaller

attack surface, which helps reduce vulnerability to attack.

3.8.2.2 Secure and Non-secure states

In the Arm architecture, there are two Security states: Secure and Non-secure. These

Security states map onto the Trusted and Normal worlds.

At EL0, EL1, and EL2 the processor can be in either Secure state or Non-secure state,

which is controlled by the SCR_EL3.NS bit. You often see this written as:

• NS.EL1: Non-secure state, Exception level 1

• S.EL1: Secure state, Exception level 1

EL3 is always in Secure state, regardless of the value of the SCR_EL3.NS bit. The

arrangement of Security states and Exception levels is shown here:

Figure 3-11 : Secure and Non-secure states

 AXE5-Eagle Create a Linux Boot Image

3.8.2.3 Switching between Secure States

To change Security state, in either direction, execution must pass through EL3, as

shown in the following diagram:

Figure 3-12 : Switching between states

The preceding diagram shows an example sequence of the steps involved in moving

between Security states. Taking this one step at a time:

• Entering a higher Exception level requires an exception. Typically, this

exception would be a FIQ or an SMC (Secure Monitor Call) exception.

• EL3 is entered at the appropriate exception vector. Software that is running in

EL3 toggles the SCR_EL3.NS bit.

• An exception return then takes the processor from EL3 to S.EL1.

There is more to changing Security state than just moving between the Exception

levels and changing the SCR_EL3.NS bit. We also must consider the processor state.

There is only one copy of the vector registers, the general-purpose registers, and

most System registers. When moving between Security states it is the responsibility

of software, not hardware, to save and restore register state. By convention, the piece

of software that does this is called the Secure Monitor. This makes our earlier

example look more like what you can see in the following diagram:

 AXE5-Eagle Create a Linux Boot Image

29

Page | 29 arrow.com

Figure 3-13 : Secure Monitor

Trusted Firmware, an open-source project that Arm sponsors, provides a reference

implementation of a Secure Monitor. This is referred to as Arm Trusted Firmware

(ATF).

3.8.3 Arm Trusted Firmware (ATF), Boot Loader Stage 3-1 (BL31)

The ARM Trusted Firmware implements a subset of the Trusted Board Boot

Requirements (TBBR) Platform Design Document (PDD) for ARM reference

platforms. The TBB sequence starts when the platform is powered on and runs up to

the stage where it hands-off control to firmware running in the normal world in

DRAM. This is the cold boot path.

The ARM Trusted Firmware also implements the Power State Coordination Interface

(PSCI) as a runtime service. PSCI is the interface from normal world software to

firmware implementing power management use-cases (for example, secondary CPU

boot, hotplug and idle). Normal world software can access ARM Trusted Firmware

runtime services via the ARM SMC (Secure Monitor Call) instruction.

The ARM Trusted Firmware implements a framework for configuring and managing

interrupts generated in either security state.

BL31 executes solely in trusted memory. The functionality implemented by BL31 is as

follows.

http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf

 AXE5-Eagle Create a Linux Boot Image

3.8.3.1 Architectural initialization

Architectural initialization in BL31 allows override of any previous initialization done

by prior boot loader firmware. BL31 creates page tables to address the first 4GB of

physical address space and initializes the MMU accordingly. It initializes a buffer of

frequently used pointers, called per-CPU pointer cache, in memory for faster access.

Currently the per-CPU pointer cache contains only the pointer to crash stack. It then

replaces the existing exception vectors with its own. BL31 exception vectors

implement more elaborate support for handling SMCs since this is the only

mechanism to access the runtime services implemented by BL31 (PSCI for example).

BL31 checks each SMC for validity as specified by the SMC calling convention

PDD before passing control to the required SMC handler routine.

3.8.3.2 Platform initialization

BL31 performs detailed platform initialization, which enables normal world software

to function correctly. It initializes a UART console, which enables access to

the printf family of functions in BL31. It enables the system level implementation of

the generic timer through the memory mapped interface. It initializes the following:

• GICv2 initialization

• GICv3 initialization

• Power management

• Runtime services initialization

 AXE5-Eagle Create a Linux Boot Image

31

Page | 31 arrow.com

4 HPS Customization

As mentioned in section 3.4, a hardware design must be defined for the Agilex™ SoC

FPGA, if you choose to take advantage of the HPS features. This section will review the

HPS customizations that were chosen for the GHRD and used on the AXE5-Eagle board.

The HPS customization is implemented by using the Platform Designer tool. This tool is

launched from Quartus Prime Pro. The snapshots below were captured from the Hard

Processor System Intel Agilex 5 IP component.

The Figure below shows the different sections of the HPS that are customized in the

GHRD.

• FPGA to SDRAM (F2SDRAM) bridge

• FPGA to HPS (F2H) bridge

• HPS and Lightweight HPS to FPGA (LWH2F) bridge

• MPU Cluster

• HPS peripherals

Figure 4-1 : HPS customization

 AXE5-Eagle Create a Linux Boot Image

Customization is implemented within the Hard Processor System Intel Agilex 5 FPGA

IP Graphical User Interface seen in the figure below.

The HPS FPGA Interfaces tab is used to customize the bridges. The HPS Clocks,

Resets, Power tab is used to determine which Arm cores are powered on and at which

frequencies they operate. The Pin Mux and Peripherals tab is used to select which

peripherals are to be used and whether they will be routed to the HPS IO banks or to

FPGA IO banks.

Figure 4-2 : HPS Customization

 AXE5-Eagle Create a Linux Boot Image

33

Page | 33 arrow.com

4.1 HPS FPGA Interfaces

The bridges between the FPGA and the HPS allow

• HPS master access to FPGA peripherals (H2F and LWH2F)

• FPGA access to the full HPS address map including coherent access to HPS

SDRAM (F2H)

• FPGA non-coherent access to HPS SDRAM (F2SDRAM)

It is useful to view the HPS system address map from the FPGA and the HPS

perspectives before reviewing the bridge customization.

Figure 4-3 : Total System Address Map

The address map on the left represents the view as seen by HPS masters. The map on

the right represents the view as seen by FPGA masters. The map in the middle shows

the respective local address maps of the LWH2F, H2F and MPFE2SDRAM bridges.

 AXE5-Eagle Create a Linux Boot Image

4.1.1 FPGA to SDRAM Bridge (F2SDRAM)

The 40 Bit Global address map for the FPGA provides three separate address map

locations for the SDRAM. The first is located at 0x00 8000 0000 and has an address

span of 2GB. The next is located at 0x08 8000 0000 and has an address span of

30GB. The last is located at 0x88 8000 0000 and has an address span of 480GB.

Used together these three regions provide for a total of 512 GB SDRAM. The Eagle

board is populated with 1GB of LPDDR4 SDRAM connected to the HPS EMIF

controller. This is mapped in the 40 Bit Global address map in the 2GB to 4GB space.

The Interface Address Width can be set anywhere from 20 to 38 bits. The Data Width

can be 32, 64 or 128 bits wide. To provide access to the entire range of the LPDDR4

from the fabric, the Interface Address Width is set to 32 bits. This provides the

required map range of 0 to 4GB. The data width is set to 256 bits for maximum

bandwidth.

Figure 4-4 : F2SDRAM Customization

 AXE5-Eagle Create a Linux Boot Image

35

Page | 35 arrow.com

4.1.2 Lightweight HPS to FPGA Bridge (LWH2F)

This bridge’s base address is mapped at one fixed location in the 40 Bit Global

address map for the HPS (0x00 2000 0000). It has a maximum address span of 29

bits (512 MB). It has a fixed data width of 32 bits. The GHRD uses the entire 29-bit

span.

The bridge is intended to be used as a low latency, control plane interface from the

HPS to the FPGA.

Figure 4-5 : LWHPS2FPGA Customization

 AXE5-Eagle Create a Linux Boot Image

4.1.3 HPS to FPGA Bridge (H2F)

The 40 Bit Global address map for the HPS provides three separate address map

locations for the H2F bridge. The first is located at 0x00 4000 0000 and has an

address span of 1GB. The next is located at 0x04 4000 0000 and has an address

span of 15GB. The last is located at 0x44 4000 0000 and has an address span of

240GB. The local address map for this bridge presents a contiguous 38 bit address

span (256 GB).

The Interface Address Width can be set anywhere from 20 to 38 bits. The Data Width

can be 32, 64 or 128 bits wide. The GHRD currently has selected a 1GB address span

and 32 data width. The GHRD has the H2F bridge connected to the FPGA EMIF

subsystem. The Eagle board is populated with 1GB of LPDDR4 SDRAM connected to

the FPGA EMIF controller.

Figure 4-6 : HPS2FPGA Customization

4.1.4 FPGA to HPS Bridge (F2H)

F2H bridge provides a way for initiators (IPs, accelerators) in the fabric to access HPS

peripherals, which makes the peripherals extensions of the HPS system. The

accelerator coordinates with the HPS MPU via mailboxes or semaphores in HPS

memory, or via various interrupts and GPIOs exposed by the HPS to the fabric.

Typical use cases involve the HPS MPU preparing space in memory for fabric

accelerators to use, then allowing the accelerator to move and process large

amounts of data in HPS memory. The HPS MPU can perform control functions such

as inspecting headers in large streams of data to determine the next action and

coordinating data movement among multiple fabric accelerators. This bridge places

 AXE5-Eagle Create a Linux Boot Image

37

Page | 37 arrow.com

fabric initiators in the same hierarchy as the MPU in the HPS subsystem. F2H bridge

supports IO cache coherency with the HPS MPU caches; fabric transactions can

snoop the MPU caches, but the MPU caches cannot snoop activity in the fabric. In

addition, using ACE-lite, the F2H bridge goes through the system memory

management unit (SMMU). This allows fabric initiators to use the same virtual

memory view as the MPU.

 AXE5-Eagle Create a Linux Boot Image

4.2 HPS Clocks, Resets, Power

This section allows the designer the ability to customize the input clock frequency

for the HPS, the Phase Lock Loop output (PLL) frequencies and which Arm cores are

powered on.

4.2.1 Input Clocks

The Eagle board connects a 25 MHz external oscillator to the HPS EOSC pin.

Figure 4-7 : Input Clocks

4.2.2 PLL Clocks

The individual frequencies that each Arm core operates at can be specified. Cores 0

and 1 share the same frequency.

Figure 4-8 : PLL Clocks

 AXE5-Eagle Create a Linux Boot Image

39

Page | 39 arrow.com

4.2.3 Power & Resets

The user can configure which Arm cores are powered on. Cores 0 and 1 share the

same selection.

Figure 4-9 : Power Configurations

4.3 Pin Mux and Peripherals

The Auto-Place IP tab contains a list of HPS peripherals that can be enabled and

either routed to the HPS I/O or to the FPGA.

Auto-Place IP feature assists you to easily select the desired peripherals and have

the tool automatically place those peripherals either among the 48 dedicated HPS

I/O or on the FPGA if available.

You can enable the following types of peripherals:

• SD/MMC Controller

• USB 2.0 OTG Controller (USB0)

• USB 3.1 Gen1 Controller (USB1)

• Ethernet Media Access Controller

• SPI Master

• SPI Slave

• UART Controller

• I2C Controller

• I3C Controller

• NAND Flash Controller

• CoreSight Debug and Trace

• GPIO

The HPS has 48 dedicated IOs; therefore, not all peripherals can fit in the HPS I/O.

 AXE5-Eagle Create a Linux Boot Image

4.3.1 Advanced IP Placement

The Advanced IP Placement tab allows you to be more specific about the placement

of each peripheral pin in the HPS dedicated I/O quadrant space. Each location has a

pulldown selection menu where you can select which peripheral I/O to be routed to

the pin location. Each pulldown menu corresponds to the inputs available to the Pin

Mux at that location.

Figure 4-10 : AXE5-Eagle board Advanced IP Placement

 AXE5-Eagle Create a Linux Boot Image

41

Page | 41 arrow.com

Figure 4-11 below shows the corresponding wiring, based on the Advanced IP

Placement, on the AXE5-Eagle board, for the HPS IO bank.

Figure 4-11 : AXE5-Eagle board schematic wiring for Advanced IP Placement

The Advanced FPGA Placement tab allows you to route specific peripherals to the

FPGA.

Figure 5-12 below shows the specific peripherals that are routed to FPGA I/O banks.

They are:

• EMAC0

• I2C1

• SPIM0

 AXE5-Eagle Create a Linux Boot Image

4.3.2 Advanced FPGA Placement

Figure 4-12 : AXE5-Eagle board Advanced FPGA Placement

The HPS customization information is compiled into the configuration bitstream and

is later used by the FSBL to configure the HPS at boot time. It is commonly referred

to as the HPS handoff data.

 AXE5-Eagle Create a Linux Boot Image

43

Page | 43 arrow.com

5 Creating a Bootable Image

In section three we explored the hardware, firmware and software necessary to boot an

Agilex 5 SoC FPGA from Power-on to the Linux prompt. You will now learn how to build

the required software. You will also learn how to package it on appropriate boot media.

The flow for creating a Golden System Reference Design is:

• Create a Hardware project in Quartus (GHRD)

• Customize the HPS in Platform Designer

• Compile the GHRD in Quartus to generate an FPGA configuration bitstream.

• Compile the Arm Trusted Firmware (BL31)

• Compile U-boot. This creates the FSBL and the SSBL.

• Compile a U-boot boot script.

• Compile the Linux kernel

• Use the Yocto project to create a Linux root file system (rootfs)

• Package BL31, U-boot (SSBL), boot script, and the Linux kernel in the FAT

partition of an SD card.

• Package the rootfs in the Linux partition of the SD card.

• Create a custom FPGA configuration image, using the Quartus Programming File

Generator. This image includes the SDM firmware, the FSBL, HPS handoff data

and the FPGA configuration data.

• Write the custom FPGA configuration image into QSPI flash using the Quartus

Programmer.

This lab will focus on compiling the software components required to boot Linux. You

will also boot the Linux image on an AXE5-Eagle board

• The GHRD is provided as a completed, pre-built, project.

• The Yocto project can take up to a few hours to build. It is provided as a

completed, pre-built, project.

 AXE5-Eagle Create a Linux Boot Image

The GSRD flow is shown in Figure 5-1 below.

Figure 5-1 : The GSRD Build Flow

Follow the instructions in the next few sections of the Lab to create a bootable Linux

image for the AXE5-Eagle board

 AXE5-Eagle Create a Linux Boot Image

45

Page | 45 arrow.com

5.1 Code repositories

Arrow hosts several repositories, required for this build, on Github. They are a mirror

of the Altera repositories and are continually maintained to include the latest

updates. The repositories are listed below.

• Arm Trusted Firmware – arm-trusted-firmware

• U-boot – u-boot-socfpga

• Linux – linux_socfpga

Additional repositories are hosted to support the GHRD and other reference designs

• Golden Hardware Reference Design - ghrd-socfpga

• Reference Designs – refdes-agilex5

https://github.com/ArrowElectronics/arm-trusted-firmware
https://github.com/ArrowElectronics/u-boot-socfpga/tree/socfpga_v2023.10
https://github.com/ArrowElectronics/linux-socfpga/tree/socfpga-6.1.68-lts
https://github.com/ArrowElectronics/ghrd-socfpga
https://github.com/ArrowElectronics/refdes-agilex5/blob/main/scripts/fit_kernel_agilex5.its

 AXE5-Eagle Create a Linux Boot Image

5.2 Launch the Oracle VirtualBox Linux Virtual Machine

5.2.1 Launch the VirtualBox based Ubuntu 22.04 LTS Virtual Machine.

Select the Agilex 5 Workshop and then press the Start button

5.2.2 Copy and paste guide

A copy and paste guide is provided for convenience. These commands can be pasted

into the Linux shell as directed in the Lab guide.

The following shortcuts can be used

 Copy Ctrl + C

 Paste Shift + Ctrl + V

 AXE5-Eagle Create a Linux Boot Image

47

Page | 47 arrow.com

5.2.3 Host password

The password for the VirtualBox VM is root. This will be required by the super user

command sudo.

5.2.4 VirtualBox Menu Bar

A menu bar is visible at the top of the VirtualBox screen. This will be referred to later

in the lab document for access to specific functions.

5.3 Setup the build environment

Follow the instructions listed below to setup the build environment. First, open a

shell. The instructions can be copied and pasted from the copy and paste guide, a line

at a time, into the shell and executed. The instructions do the following:

• Define a TOP_FOLDER

$ cd agilex_5

$ export TOP_FOLDER=`pwd`

5.4 Arm Trusted Firmware (BL31)

The Arm Trusted Firmware code has not been modified for the AXE5-Eagle board.

The code is a mirror image of the altera repository and can be compiled as is.

Follow the instructions listed below to clone the source code and complete the

compilation. The instructions can be copied and pasted from the copy and paste

guide, a line at a time, into the shell and executed. The instructions do the following:

• Clone the Arrow Arm Trusted Firmware repository

• Compile

 AXE5-Eagle Create a Linux Boot Image

 $ git clone -b QPDS25.1_REL_GSRD_PR https://github.com/ArrowElectronics/arm-trusted-
firmware arm-trusted-firmware

 $ cd arm-trusted-firmware

 $ make -j 48 PLAT=agilex5 bl31

The following file is created:

• $TOP_FOLDER/arm-trusted-firmware/build/agilex5/release/bl31.bin

The build flow for ARM Trusted Firmware is represented in the figure below.

Figure 5-2 : Arm Trusted Firmware Build flow

5.5 U-boot

The build for the AXE5-Eagle board utilizes two distinct customization sources.

• U-boot build configuration (defconfig)

• devicetree

5.5.1 defconfig

U-boot utilizes the same Kconfig, Kbuild build configuration system as Linux. The

build configuration is specified in a defconfig file. This determines which features and

hardware support code are built into the U-boot executable.

The defconfig for the AXE5-Eagle board. Is comprised of a combination of a standard

agilex 5 defconfig and a custom config fragment.

• socfpga_agilex5_defconfig

• config-fragment-eagle

5.5.2 Devicetree

The devicetrees are used to define dynamic boot selections at boot time. They define

which drivers to load and which peripherals to enable.

https://github.com/ArrowElectronics/u-boot-socfpga/blob/socfpga_v2025.01/configs/socfpga_agilex5_defconfig
https://github.com/ArrowElectronics/u-boot-socfpga/blob/socfpga_v2025.01/config-fragment-eagle

 AXE5-Eagle Create a Linux Boot Image

49

Page | 49 arrow.com

Devicetrees for U-boot have been customized for the AXE5-Eagle board.

• socfpga_agilex5_axe5_eagle-u-boot.dtsi

• socfpga_agilex5_axe5_eagle.dts

The same set of Devicetree source files are used for FSBL and SSBL. The U-Boot

devicetree is filtered by the fdtgrep tools during the build process to generate a

much smaller device tree used in the FSBL.

5.5.3 Compile U-boot

Follow the instructions listed below to clone the source code and complete the

compilation. The instructions can be copied and pasted from the copy and paste

guide, a line at a time, into the shell and executed. The instructions do the following:

• Clone the source.

• Clean the code base of any remnants using the mrproper option. Fun fact: The

name mrproper is derived from a reference to the cleaning product Mr. Clean,

which translates into Mr. Proper in other languages.

• Use the AXE5-Eagle board build configuration,

socfpga_agilex5_axe5_eagle_defconfig

• Create a link to the ATF bl31 binary file. This will be packaged into the u-

boot.itb image.

$ cd $TOP_FOLDER

$ rm -rf u-boot-socfpga

$ git clone -b QPDS25.1_REL_GSRD_PR https://github.com/ArrowElectronics/u-boot-socfpga
u-boot-socfpga

$ cd u-boot-socfpga

• Only boot from SD, do not try QSPI and NAND

$ sed -i 's/u-boot,spl-boot-order.*/u-boot\,spl-boot-order = \&mmc;/g'
arch/arm/dts/socfpga_agilex5_axe5_eagle-u-boot.dtsi

• Disable NAND in the device tree

$ sed -i '/&nand {/!b;n;c\\tstatus = "disabled";' arch/arm/dts/socfpga_agilex5_axe5_eagle-u-
boot.dtsi

• Link to ATF

$ ln -s ../arm-trusted-firmware/build/agilex5/release/bl31.bin

https://github.com/ArrowElectronics/u-boot-socfpga/blob/socfpga_v2025.01/arch/arm/dts/socfpga_agilex5_axe5_eagle-u-boot.dtsi
https://github.com/ArrowElectronics/u-boot-socfpga/blob/socfpga_v2025.01/arch/arm/dts/socfpga_agilex5_axe5_eagle-u-boot.dtsi
https://github.com/ArrowElectronics/u-boot-socfpga/blob/socfpga_v2025.01/arch/arm/dts/socfpga_agilex5_axe5_eagle.dts
https://github.com/ArrowElectronics/u-boot-socfpga/blob/socfpga_v2025.01/arch/arm/dts/socfpga_agilex5_axe5_eagle.dts
https://en.wikipedia.org/wiki/Mr._Clean#:~:text=Clean%20(or%20Mr.,a%20melamine%20foam%20abrasive%20sponge.&text=%22There's%20no%20clean%20like%20Mr,Clean.%22&text=The%20all%2Dpurpose%20cleaner%20was,character%20actor%20House%20Peters%20Jr.

 AXE5-Eagle Create a Linux Boot Image

• Clean the build

$ make clean && make mrproper

• Create the defconfig. Combine with the custom config fragment

$ make socfpga_agilex5_ defconfig

$./scripts/kconfig/merge_config.sh -O . -m .config config-fragment-eagle

• Compile to generate the devicetree, FSBL & SSBL

• Package the ATF bl31 binary, devicetree and SSBL into u-boot.itb

$ make -j 64

The following files are created:

• $TOP_FOLDER/u-boot-socfpga/u-boot.itb (SSBL)

• $TOP_FOLDER/u-boot-socfpga/spl/u-boot-spl-dtb.hex (FSBL)

Detailed build flow for U-boot is represented in the figure below.

Figure 5-4 : U-boot (SSBL) Build flow

 AXE5-Eagle Create a Linux Boot Image

51

Page | 51 arrow.com

5.6 Linux

The build for the AXE5-Eagle board utilizes two distinct customization sources.

• Linux kernel build configuration (defconfig)

• Devicetree source (dts)

5.6.1 defconfig

The Linux kernel utilizes the Kconfig, Kbuild build configuration system. The build

configuration is specified in a defconfig file. This determines which features and

hardware support code are built into the Linux kernel.

The defconfig for the AXE5-Eagle board. Is comprised of a combination of a standard

linux arch64 defconfig and a custom config fragment.

• defconfig

• config-fragment-eagle

5.6.2 Devicetree

The devicetree is used to define dynamic boot selections at boot time. They define

which drivers to load and which peripherals to enable. The devicetree also defines

the location of the peripherals in the memory map and their associated drivers.

The Devicetree listed below has been customized for the AXE5-Eagle board.

• socfpga_agilex5_axe5_eagle.dts

5.6.3 Compile Linux

Follow the instructions listed below to clone the source code and complete the

compilation. This will take approximately 25 minutes to download and compile. The

instructions can be copied and pasted from the copy and paste guide, a line at a time,

into the shell and executed. The instructions do the following:

https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.12.11-lts/arch/arm64/configs/defconfig
https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.12.11-lts/config-fragment-eagle
https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.1.68-lts/arch/arm64/boot/dts/arrow/socfpga_agilex5_axe5_eagle.dts

 AXE5-Eagle Create a Linux Boot Image

• Clone the source.

• Create the AXE5-Eagle board build configuration,

socfpga_agilex5_axe5_eagle_defconfig to compile the Linux kernel

• Compile the Linux kernel and the devicetree

• Setup the build environment and clone the linux source code

$ cd $TOP_FOLDER

$ rm -rf linux-socfpga

$ git clone -b QPDS25.1_REL_GSRD_PR https://github.com/ArrowElectronics/linux-socfpga
linux-socfpga

$ cd linux-socfpga

• Add arrow dts folder as Makefile option

$ sed -i '$ a subdir-y += arrow' arch/arm64/boot/dts/Makefile

• Merge configuration fragment with the default defconfig

$ make defconfig

$./scripts/kconfig/merge_config.sh -O ./ ./.config ./config-fragment-eagle

• Compile the Linux kernel and the devicetree

$ make -j 64 Image && make arrow/socfpga_agilex5_axe5_eagle.dtb

The following files are created:

• $TOP_FOLDER/linux-socfpga/arch/arm64/boot/Image

• $TOP_FOLDER/linux-

socfpga/arch/arm64/boot/dts/arrow/socfpga_agilex5_axe5_eagle.dtb

The build flow for the Linux kernel and devicetree is shown in the figure below

Figure 5-5 : Linux Build flow

 AXE5-Eagle Create a Linux Boot Image

53

Page | 53 arrow.com

5.7 Create a Linux Root File System (rootfs) with Yocto

The Yocto build requirements and flow are described on the Rocketboards site on

the “Building Bootloader for Agilex 5” page. This can take a number of hours to

complete.

The compiled rootfs image is provided for this lab..

The file is located at :

• $TOP_FOLDER/yocto/build/tmp/deploy/images/agilex5/core-image-

minimal-agilex5.rootfs.tar.gz

https://www.rocketboards.org/foswiki/Documentation/BuildingBootloaderForAgilex5#Building_Yocto_Rootfs

 AXE5-Eagle Create a Linux Boot Image

5.8 Create the FPGA Configuration Bitstream Images

The HPS boot first mode requires that two configuration files are generated. The first

contains the HPS EMIF I/O configuration information. The SDM uses this to setup the

HPS memory controller I/O before the FSBL starts running. This file is combined with

the FSBL and stored as a JIC file in QSPI flash. It can also be created as an SRAM

Object File (SOF) and downloaded via JTAG. This is convenient during development.

The second file is produced as a Raw Binary File (RBF) and contains the FPGA core

logic and I/O configuration information. The RBF is placed on the FAT partition of the

SD card. It is read during the SSBL operation and written to the FPGA.

5.8.1 Create the HPS EMIF I/O Configuration SOF file

Create a custom HPS EMIF I/O configuration image, using the Quartus Programming

File Generator. This image includes the FSBL, HPS handoff data and the FPGA

configuration data. It is generated as a SOF file (SRAM Object File) and is downloaded

into the FPGA. This will trigger an FPGA reconfiguration which in turn will begin the

process of booting the HPS.

The instructions can be copied and pasted from the copy and paste guide, a line at a

time, into the shell and executed. Include the line below when cutting and pasting.

The instructions do the following:

• cd to the GHRD output_files subdirectory

• Create the integrated SOF file

$ cd $TOP_FOLDER/ghrd-socfpga/axe5_eagle_ghrd/output_files/

$ quartus_pfg -c axe5_eagle_top.sof axe5_eagle_top_hps.sof -o hps_path=$TOP_FOLDER/u-
boot-socfpga/spl/u-boot-spl-dtb.hex

The following Quartus Programming File Generation option is used

• -o hps_path points to the location of the FSBL

The following file is generated :

• $TOP_FOLDER/ghrd-

socfpga/axe5_eagle_ghrd/output_files/axe5_eagle_top_hps.sof

 AXE5-Eagle Create a Linux Boot Image

55

Page | 55 arrow.com

5.8.2 Create the FPGA Core RBF file

Create the FPGA Core RBF image using the Quartus Programming File Generator. This

image includes the FPGA Core logic and I/O configuration data. It is written to the

FAT partition of the SD card.

• Create the RBF file

$ cd $TOP_FOLDER/ghrd-socfpga/axe5_eagle_ghrd/output_files/

$ quartus_pfg -c axe5_eagle_top.sof axe5_eagle_top.jic -o hps=on -o device=MT25QU02G -o
flash_loader=A5ED065BB32AE5SR0 -o hps_path=$TOP_FOLDER/u-boot-socfpga/spl/u-boot-spl-
dtb.hex -o mode=ASX4

The following Quartus Programming File Generation option is used

• -o hps_path points to the location of the FSBL

The following files are created :

• $TOP_FOLDER/ghrd-socfpga/axe5_eagle_ghrd/output_files/axe5_eagle_top.hps.jic

• $TOP_FOLDER/ghrd-socfpga/axe5_eagle_ghrd/output_files/axe5_eagle_top.core.rbf (rename it to

ghrd.core.rbf)

Figure 5-6 : Create the FPGA Bitstream files

 AXE5-Eagle Create a Linux Boot Image

5.9 Create the SD Card Image

Intel provides a python utility, make_sdimage_p3.py, that will create a bootable

image, with partitions and content. The instructions can be copied and pasted from

the copy and paste guide, a line at a time, into the shell and executed. Include the line

below when cutting and pasting. The instructions do the following:

The commands below do the following

• create a directory for collecting the content for the SD card

• download the sdimage_p3.py utility

• copy all the files for deployment to the fatfs and rootfs directories.

$ cd $TOP_FOLDER

$ mkdir sd_card && cd sd_card

$ wget https://releases.rocketboards.org/release/2020.11/gsrd/tools/make_sdimage_p3.py

$ # remove mkfs.fat parameter which has some issues on Ubuntu 22.04

$ sed -i 's/\"\-F 32\",//g' make_sdimage_p3.py

$ chmod +x make_sdimage_p3.py

$ mkdir fatfs && cd fatfs

$ cp $TOP_FOLDER/ghrd-socfpga/axe5_eagle_ghrd/output_files/ghrd.core.rbf .

$ cp $TOP_FOLDER/u-boot-socfpga/u-boot.itb .

$ cp $TOP_FOLDER/linux-socfpga/arch/arm64/boot/Image .

$ cp $TOP_FOLDER/linux-
socfpga/arch/arm64/boot/dts/arrow/socfpga_agilex5_axe5_eagle.dtb .

$ cd ..

$ mkdir rootfs && cd rootfs

$ sudo tar xf $TOP_FOLDER/yocto/build/tmp/deploy/images/agilex5/core-image-minimal-
agilex5.rootfs.tar.gz

$ cd ..

 AXE5-Eagle Create a Linux Boot Image

57

Page | 57 arrow.com

• Use the sdimage_p3.py utility to create sdcard.img.

$ sudo python3 make_sdimage_p3.py -f -P fatfs/*,num=1,format=fat32,size=512M -P
rootfs/*,num=2,format=ext3,size=512M -s 1024M -n sdcard.img

$ sudo chmod 777 sdcard.img

$ cd ..

The file is located at :

• $TOP_FOLDER/sd_card/sdcard.img

5.9.1 Write the SD Card image

The image can be written to an SD card using the dd command in Linux. The

instructions can be copied and pasted from the windows below, a line at a time, into

the shell and executed. The instructions do the following:

Caution. Care must be taken to first identify the drive letter of the SD Card.

Writing an incorrect drive letter can potentially overwrite the contents of the

Virtual Machines hard drive.

Determine the device associated with the SD card on the host. Run the command

below before and after inserting and enabling the the SD card in the VM.

$ cat /proc/partitions

5.9.1.1 Enable the SD Card Adaptor

It is best to use a USB to micro SD card adaptor as they are recognized by VirtualBox.

Use the following steps to make the adaptor available in the VM.

• On the VirtualBox menu bar press Devices → USB and then click on the

adaptor.

 AXE5-Eagle Create a Linux Boot Image

Run the command below again. The new drive letter will show up as /dev/sdx/ where

x represents the actual letter (a,b,c,d etc).

$ cat /proc/partitions

Use the dd utility to write the SD image to the SD card. Substitute the letter x with

the actual drive letter discovered above. Then use the sync command to flush the

changes from memory to the SD card.

$ sudo dd if=$TOP_FOLDER/sd_card/sdcard.img of=/dev/sdx bs=1M status=progress

$ sudo sync

 AXE5-Eagle Create a Linux Boot Image

59

Page | 59 arrow.com

5.10 Configure the board

The following components are required for the demo:

• AXE5-Eagle (TEI0185) development board,

• 12VDC 40W power supply

• Arrow-USB-Blaster (TEI-0004-02) for downloading to the FPGA

• 2 x micro-USB Cable (one for the Arrow Blaster, one for the HPS UART)

• 8GB SD card with the sdcard.img

5.10.1 Configure the MSEL DIP Switches

The MSEL2 and MSEL1 DIP switches need to be set to the OFF position (right) for

JTAG Boot selection.

5.10.2 Assemble the Hardware

• Insert the SD card in the J24 cage, on the right hand of the board.

• Attach the micro-USB cable to UART (J5) connector

 AXE5-Eagle Create a Linux Boot Image

• Plug the Arrow-USB-Blaster (TEI0004-02) into J34 with the USB connector facing

to the right.

• Connect both USB cables to the host computer

• Connect the power supply to the AXE5-Eagle J29 barrel connector

• Plug the AC-DC adapter into an AC outlet

5.11 Connect to the target terminal

• Launch a terminal program (like Tera Term VT or Putty) and connect using serial

port

• Select 115200 baud 8,N,1

• Select the appropriate target COM port

5.12 Boot the Linux Image

• When the integrated SOF file has been downloaded the Secure Device Manager

(SDM) will initiate the FPGA configuration process.

• The SDM will read the SOF file. This contains the FPGA image, the HPS configuration

data and the U-boot First Stage Boot Loader (FSBL)

• When the FPGA is configured, the SDM will release the Arm processor cluster in the

Hard Processing System (HPS) from reset.

• The Arm processor cluster then boots U-boot and Linux from the SD card

• The Linux password is root

5.12.1 Enable the Arrow Blaster in the VirtualBox VM

Click on Devices → USB → Arrow USB Blaster to enable the Blaster in the VirtualBox

VM.

https://superuser.com/questions/1059447/how-to-check-com-ports-in-windows-10

 AXE5-Eagle Create a Linux Boot Image

61

Page | 61 arrow.com

5.12.2 Download the FPGA configuration file

The FPGA JTAG chain will expose 1 or 2 endpoints when auto-detected by the

Quartus programmer. Follow the appropriate instructions to program the Agilex 5

FPGA for either scenario.

Determine the number of JTAG devices. In the terminal in VirtualBox type

 $ jtagconfig

The jtag chain will respond with one or two devices in the chain. An example of each is

shown below

One JTAG device

1) Arrow-USB-Blaster [ARA31601-TEI0004]

 0364F0DD A5E(C065BB32AR0|D065BB32AR0)

Two JTAG devices

1) Arrow-USB-Blaster [ARA31601-TEI0004]

 4BA06477 ARM_CORESIGHT_SOC_600

 0364F0DD A5E(C065BB32AR0|D065BB32AR0)

 AXE5-Eagle Create a Linux Boot Image

5.12.2.1 Download the SOF file

The instructions can be copied and pasted from the copy and paste guide, a line at a

time, into the shell and executed.

• cd to the output files directory

$ cd $TOP_FOLDER/ghrd-socfpga/axe5_eagle_ghrd/output_files/

Option 1: One Device

quartus_pgm -c 1 -m jtag –o "p;axe5_eagle_top_hps.sof@1"

Option 2: Two Devices

quartus_pgm -c 1 -m jtag -o "p;axe5_eagle_top_hps.sof@2"

5.13 View the Linux Boot Log

The HPS is released from reset by the SDM and the boot process begins with the

FSBL. A snapshot of the initial boot log is shown below.

 AXE5-Eagle Create a Linux Boot Image

63

Page | 63 arrow.com

Click on the link below to view a complete Boot Log of Linux on the AXE5-Eagle

board

• AXE5-Eagle board Linux Boot Log

https://github.com/ArrowElectronics/Agilex-5/wiki/Boot-log-25-1

 AXE5-Eagle Create a Linux Boot Image

5.14 Turn RGB LEDs On and Off

This section explains how FPGA peripherals can be connected to the HPS and where

they are located in the HPS memory map. Accessing FPGA connected LEDs are an

example of this.

Four RGB LEDs are directly connected to the FPGA. This is shown in the figure below.

Each RGB LED is connected to a 3 bit PIO peripheral in the FPGA. These PIOs are

located in the peripheral_subsystem in the GHRD. The peripheral_subsystem is

connected to the HPS memory map via the Lightweight HPS to FPGA (LWH2F) bridge.

The LWH2F bridge is mapped at offset 0x20000000 within the HPS memory map

 AXE5-Eagle Create a Linux Boot Image

65

Page | 65 arrow.com

The peripheral_subsystem, within the GHRD, is mapped at address 0x08000000 on

the FPGA side of the bridge.

A review of the peripheral_subsystem reveals the local addresses of the rgb_led PIO

peripherals.

 AXE5-Eagle Create a Linux Boot Image

To calculate the addresses of the LED PIOs from the HPS add the LWH2F bridge

address (0x20000000), the address of the peripheral_subsystem (0x08000000) and

the individual LED PIO (0x30, 0x40, 0x50 or 0x60) addresses. This results in the

following addresses

RGB_LED0 0x28000030

RGB_LED1 0x28000040

RGB_LED2 0x28000050

RGB_LED3 0x28000060

Each PIO has three output bits. The red LED is connected to bit2, the green LED to

bit1 and the blue LED to bit0. A zero will turn the LED on and a one will turn it off.

5.14.1 Access the LEDS from Linux using devmem2

Physical addresses in hardware can be directly read or written from Linux user space

using the devmem2 package.

• Press enter in the Putty or Tera Term terminal.

• Type root when prompted for the password

5.14.1.1 Turn on RGB_LED2

• Illuminate RGB_LED2 – red

 $ devmem2 0x28000050 w 0x03

• Illuminate RGB_LED2 – green

 $ devmem2 0x28000050 w 0x05

• Illuminate RGB_LED2 – blue

 $ devmem2 0x28000050 w 0x06

• Turn off RGB_LED2

 $ devmem2 0x28000050 w 0x07

5.14.2 Specify each LED in Linux as a device

The LEDs are typically addressed as devices from a user space application or from

the command line in a shell. The Linux kernel has a device class for LEDs that allows

user space to control them. The LED class includes the following features:

 AXE5-Eagle Create a Linux Boot Image

67

Page | 67 arrow.com

• LED brightness. The brightness of an LED is represented as an integer

value. For LEDs connected to PWM signals, this value directly controls the

brightness. For LEDs connected to GPIOs, a brightness of 0 is off and any other

value is on.

• LED directory. LEDs appear in the directory /sys/class/leds/.

• LED mapping. GPIOs that are connected directly to LEDs are registered

through the Linux LED class sysfs interface. The devicetree can be used to

map GPIOs to LEDs, and to define their logic level.

5.14.3 Defining the RGB LEDs as devices on the AXE5-Eagle board

Two steps are required to enable the RGB LEDs as devices when building the

embedded Linux kernel.

• Specify the PIOs and LEDS in the devicetree.

• Include and enable the PIO and LED drivers when building the Linux kernel.

5.14.3.1 Examine the AXE5-Eagle devicetree

First examine the sections of the devicetree that define the PIOs. The devicetree is

parsed by the Linux kernel at boot time. The devicetree information for that

peripheral is passed, at boot time, to the specified device driver.

RGB_LED2 is connected to the rgb_led2 PIO in the peripheral subsystem. This is

defined on line 54 in the AXE5-Eagle devicetree. This entry declares a number of

important issues.

• line 54, the name of the PIO as led_pio2 and its associated FPGA address,

0x08000050

• line 55, the name of the associated Linux device driver, altr,pio-1.0

• line 57, the width, in bits of the PIO device

The altr,pio-1.0 driver bindings are described in the following Linux documentation.

https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.12.11-lts/arch/arm64/boot/dts/arrow/socfpga_agilex_ghrd.dtsi#L54
https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.12.11-lts/drivers/gpio/gpio-altera.c#L328
https://www.kernel.org/doc/Documentation/devicetree/bindings/gpio/gpio-altera.txt

 AXE5-Eagle Create a Linux Boot Image

Now that led_pio2 has been declared it can be referenced when declaring associated

RGB LED devices. Linux declares a specific GPIO device and driver for LEDs. This is

referred to in the leds section of the devicetree. The devicetree binding for this driver

is described in the following Linux documentation.

Note how each bit of the associated PIO, led_pio2 is declared as an individual device

(eg. fpga2_led_red, fpga_led2_blue, fpga2_led_green).

5.14.3.2 Examine the AXE5-Eagle Linux defconfig

It has been discussed that two linux devices are required in order to achieve the goal

of addressing individual RGB LEDs as devices from the Linux prompt. It has already

been noted how they are declared in the devicetree. Their associated drivers must be

declared in the Linux defconfig file to ensure that they are available at Linux boot

time.

The PIO peripheral is declared in the config fragment by the following lines of text.

• Line 2, CONFIG_GPIO_ALTERA

The LEDS GPIO peripheral is declared in the defconfig by the following lines of text.

• Line 1182, CONFIG_LEDS_GPIO

https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.12.11-lts/arch/arm64/boot/dts/arrow/socfpga_agilex_ghrd.dtsi#L73
https://www.kernel.org/doc/Documentation/devicetree/bindings/leds/leds-gpio.txt
https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.12.11-lts/config-fragment-eagle#L2
https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.12.11-lts/arch/arm64/configs/defconfig#L1182

 AXE5-Eagle Create a Linux Boot Image

69

Page | 69 arrow.com

5.14.4 Access the LEDS from Linux as devices

The LED devices can be viewed by entering the following command from the Linux

prompt.

 $ ls /sys/class/devices

The FPGA RGB LEDs that were declared in the devicetree are listed as individual

devices. There are two additional LEDS listed that were also declared in the

devicetree, hps_led0 and hps_led1. They are wired to PIOs in the HPS portion of the

Agilex SoC FPGA.

• Illuminate RGB_LED2 – red

 $ echo 1 > /sys/class/leds/fpga_led2_red/brightness

• Turn off RGB_LED2 – red

 $ echo 0 > /sys/class/leds/fpga_led2_red/brightness

• Illuminate RGB_LED0 – blue

 $ echo 1 > /sys/class/leds/fpga_led0_blue/brightness

• Turn off RGB_LED0 - blue

 $ echo 0 > /sys/class/leds/fpga_led0_blue/brightness

• Turn on HPS_LED0

 $ echo 1 > /sys/class/leds/hps_led0/brightness

• Turn off HPS_LED0

 $ echo 0 > /sys/class/leds/hps_led0/brightness

 AXE5-Eagle Create a Linux Boot Image

6 Additional Resources

Learn the architecture – Aarch64 Exception

Learn the architecture – TrustZone for Aarch64

Hard Processor System Technical Reference Manual

Hard Processor System Booting User Guide: Agilex 5 SoCs

Device Configuration User Guide: Agilex 5 FPGAs and SoCs

Arrow AXE5-Eagle Development Platform

Command-line Linux Reference Design

Golden Hardware Reference Design

CONGRATULATIONS! YOU HAVE SUCCESSFULLY COMPLETED
Creating a Linux Boot Image

https://developer.arm.com/documentation/102412/latest/
https://developer.arm.com/documentation/102418/latest/
https://www.intel.com/content/www/us/en/docs/programmable/814346/24-1/hard-processor-system-technical-reference.html
https://cdrdv2-public.intel.com/813763/ug-813762-813763.pdf
https://www.intel.com/content/www/us/en/docs/programmable/813773/24-2/device-configuration-user-guide-fpgas.html
https://github.com/ArrowElectronics/Agilex-5/wiki/Agilex-5-E-Series-AXE5-Eagle-Development-Platform
https://github.com/ArrowElectronics/Agilex-5/wiki/Command-Line-Linux-25.1
https://github.com/ArrowElectronics/Agilex-5/wiki/The-Golden-Hardware-Reference-Design-25.1

 AXE5-Eagle Create a Linux Boot Image

71

Page | 71 arrow.com

7 Legal Disclaimer

ARROW ELECTRONICS

EVALUATION BOARD LICENSE AGREEMENT

By using this evaluation board or kit (together with all related software, firmware, components,
and documentation provided by Arrow, “Evaluation Board”), You (“You”) are agreeing to be bound by
the terms and conditions of this Evaluation Board License Agreement (“Agreement”). Do not use the
Evaluation Board until You have read and agreed to this Agreement. Your use of the Evaluation Board
constitutes Your acceptance of this Agreement.

PURPOSE

The purpose of this evaluation board is solely intended for evaluation purposes. Any use of the
Board beyond these purposes is on your own risk. Furthermore, according the applicable law, the
offering Arrow entity explicitly does not warrant, guarantee or provide any remedies to you with regard
to the board.

LICENSE

Arrow grants You a non-exclusive, limited right to use the enclosed Evaluation Board offering
limited features only for Your evaluation and testing purposes in a research and development setting.
Usage in a live environment is prohibited. The Evaluation Board shall not be, in any case, directly or
indirectly assembled as a part in any production of Yours as it is solely developed to serve evaluation
purposes and has no direct function and is not a finished product.

EVALUATION BOARD STATUS

The Evaluation Board offers limited features allowing You only to evaluate and test purposes.
The Evaluation Board is not intended for consumer or household use. You are not authorized to use the
Evaluation Board in any production system, and it may not be offered for sale or lease, or sold, leased
or otherwise distributed for commercial purposes.

OWNERSHIP AND COPYRIGHT

Title to the Evaluation Board remains with Arrow and/or its licensors. This Agreement does not
involve any transfer of intellectual property rights (“IPR) for evaluation board. You may not remove any
copyright or other proprietary rights notices without prior written authorization from Arrow or it licensors.

RESTRICTIONS AND WARNINGS

Before You handle or use the Evaluation Board, You shall comply with all such warnings and
other instructions and employ reasonable safety precautions in using the Evaluation Board. Failure to
do so may result in death, personal injury, or property damage.

You shall not use the Evaluation Board in any safety critical or functional safety testing,
including but not limited to testing of life supporting, military or nuclear applications. Arrow expressly
disclaims any responsibility for such usage which shall be made at Your sole risk.

WARRANTY

Arrow warrants that it has the right to provide the evaluation board to you. This warranty is
provided by Arrow in lieu of all other warranties, written or oral, statutory, express or implied, including
any warranty as to merchantability, non-infringement, fitness for any particular purpose, or uninterrupted
or error-free operation, all of which are expressly disclaimed. The evaluation board is provided “as is”
without any other rights or warranties, directly or indirectly.

You warrant to Arrow that the evaluation board is used only by electronics experts who
understand the dangers of handling and using such items, you assume all responsibility and liability for
any improper or unsafe handling or use of the evaluation board by you, your employees, affiliates,
contractors, and designees.

LIMITATION OF LIABILITIES

 AXE5-Eagle Create a Linux Boot Image

In no event shall Arrow be liable to you, whether in contract, tort (including negligence), strict
liability, or any other legal theory, for any direct, indirect, special, consequential, incidental, punitive, or
exemplary damages with respect to any matters relating to this agreement. In no event shall arrow’s
liability arising out of this agreement in the aggregate exceed the amount paid by you under this
agreement for the purchase of the evaluation board.

IDENTIFICATION

You shall, at Your expense, defend Arrow and its Affiliates and Licensors against a claim or
action brought by a third party for infringement or misappropriation of any patent, copyright, trade secret
or other intellectual property right of a third party to the extent resulting from (1) Your combination of the
Evaluation Board with any other component, system, software, or firmware, (2) Your modification of the
Evaluation Board, or (3) Your use of the Evaluation Board in a manner not permitted under this
Agreement. You shall indemnify Arrow and its Affiliates and Licensors against and pay any resulting
costs and damages finally awarded against Arrow and its Affiliates and Licensors or agreed to in any
settlement, provided that You have sole control of the defense and settlement of the claim or action,
and Arrow cooperates in the defense and furnishes all related evidence under its control at Your
expense. Arrow will be entitled to participate in the defense of such claim or action and to employ
counsel at its own expense.

RECYCLING

The Evaluation Board is not to be disposed as an urban waste. At the end of its life cycle,
differentiated waste collection must be followed, as stated in the directive 2002/96/EC. In all the
countries belonging to the European Union (EU Dir. 2002/96/EC) and those following differentiated
recycling, the Evaluation Board is subject to differentiated recycling at the end of its life cycle, therefore:
It is forbidden to dispose the Evaluation Board as an undifferentiated waste or with other domestic
wastes. Consult the local authorities for more information on the proper disposal channels. An incorrect
Evaluation Board disposal may cause damage to the environment and is punishable by the law.

	1 Introduction
	1.1 Readers Guide
	1.2 Definitions

	2 Getting Started
	3 Agilex™ 5 SoC FPGAs
	3.1 Agilex 5 Family of Devices
	3.1.1 E Series, Group B
	3.1.2 E Series, Group A
	3.1.3 D Series

	3.2 Agilex™ 5 SoC FPGA Architecture
	3.2.1 The Secure Device Manager (SDM)
	3.2.2 MPU Cluster
	3.2.3 HPS/FPGA Bridges

	3.3 AXE5-Eagle Golden System Reference Design (GSRD)
	3.4 AXE5-Eagle Golden Hardware Reference Design (GHRD)
	3.5 Agilex 5 SoC FPGA Boot Overview
	3.5.1 FPGA Configuration First Mode
	3.5.2 HPS Boot First Mode
	3.5.3 FPGA Configuration First Mode – Detail
	3.5.3.1 Power-On Reset (POR)
	3.5.3.2 Secure Device Manager
	3.5.3.3 First-Stage Bootloader
	3.5.3.4 Second-Stage Bootloader
	1.1.1.1
	3.5.3.5 Operating System
	3.5.3.6 Application

	3.6 System Layout for HPS Boot First Mode
	3.6.1 Dual Flash System

	3.7 The HPS Boot Flow
	3.8 The HPS Boot Sequence
	3.8.1 Exception Levels
	3.8.2 Arm Trustzone
	3.8.2.1 Normal and Trusted worlds
	3.8.2.2 Secure and Non-secure states
	3.8.2.3 Switching between Secure States

	3.8.3 Arm Trusted Firmware (ATF), Boot Loader Stage 3-1 (BL31)
	3.8.3.1 Architectural initialization
	3.8.3.2 Platform initialization

	4 HPS Customization
	4.1 HPS FPGA Interfaces
	4.1.1 FPGA to SDRAM Bridge (F2SDRAM)
	4.1.2 Lightweight HPS to FPGA Bridge (LWH2F)
	4.1.3 HPS to FPGA Bridge (H2F)
	4.1.4 FPGA to HPS Bridge (F2H)

	4.2 HPS Clocks, Resets, Power
	4.2.1 Input Clocks
	4.2.2 PLL Clocks
	4.2.3 Power & Resets

	4.3 Pin Mux and Peripherals
	4.3.1 Advanced IP Placement
	4.3.2 Advanced FPGA Placement

	5 Creating a Bootable Image
	5.1 Code repositories
	5.2 Launch the Oracle VirtualBox Linux Virtual Machine
	5.2.1 Launch the VirtualBox based Ubuntu 22.04 LTS Virtual Machine.
	5.2.2 Copy and paste guide
	5.2.3 Host password
	5.2.4 VirtualBox Menu Bar

	5.3 Setup the build environment
	5.4 Arm Trusted Firmware (BL31)
	5.5 U-boot
	5.5.1 defconfig
	5.5.2 Devicetree
	5.5.3 Compile U-boot

	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	5.6 Linux
	5.6.1 defconfig
	5.6.2 Devicetree
	5.6.3 Compile Linux

	5.7 Create a Linux Root File System (rootfs) with Yocto
	5.8 Create the FPGA Configuration Bitstream Images
	5.8.1 Create the HPS EMIF I/O Configuration SOF file
	5.8.2 Create the FPGA Core RBF file

	5.9 Create the SD Card Image
	5.9.1 Write the SD Card image
	5.9.1.1 Enable the SD Card Adaptor

	5.10 Configure the board
	5.10.1 Configure the MSEL DIP Switches
	5.10.2 Assemble the Hardware

	5.11 Connect to the target terminal
	1.1
	5.12 Boot the Linux Image
	5.12.1 Enable the Arrow Blaster in the VirtualBox VM
	5.12.2 Download the FPGA configuration file
	5.12.2.1 Download the SOF file

	5.13 View the Linux Boot Log
	5.14 Turn RGB LEDs On and Off
	5.14.1 Access the LEDS from Linux using devmem2
	5.14.1.1 Turn on RGB_LED2

	5.14.2 Specify each LED in Linux as a device
	5.14.3 Defining the RGB LEDs as devices on the AXE5-Eagle board
	5.14.3.1 Examine the AXE5-Eagle devicetree
	5.14.3.2 Examine the AXE5-Eagle Linux defconfig

	5.14.4 Access the LEDS from Linux as devices

	1
	6 Additional Resources
	7 Legal Disclaimer

