AXES5-Eagle
Create a Linux Boot Image

Software and hardware reguirements to complete all exercises.

Requirements: Install all software as required in the installation Guide.

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

Document Control

Document Version: \ Version 1.3

Document Date: 06/22/2025

Document Author(s): Steven Kravatsky, Erika Peter, Naji Naufel, Fue Xiong, Helmut
Ploetz, Henry Alexander, Mark Travaglini, ESC Team

Document Released

Classification:

Document This document is still under development. All specifications,

Distribution: procedures, and processes described in this document are
subject to change without prior notice

Prior Version History: Version 1.2

Please read the legal disclaimer at the end of this document.

,\M\I AXES5-Eagle Create a Linux Boot Image

Contents

1 1] (oo 18 o 1o o PR 6
1.1 Y= Lo (=T E= €U o [USSR 6
1.2 = {1 71 1o] RO RRS 7
2 Getting Startedue e 9
3 AGIlEX™ 5 SOC FPGAS ... e e e e e eeeaees 10
3.1 Agilex 5 Family Of DEVICESooiiiiiiiiiiiiiie ettt 10
3. 1.1 E SErieS, GrOUP Bttt e e e e e e e e e a e e e e e e anne 10
3.1.2 E SErIES, GIrOUP A oottt e et e e e e e e et e e e e e e e e et b e e e e eeeeeeeaabraaeeaaeeeaaaaes 11

R I T I s 1Y = PSRRI 11
3.2 Agilex™ 5 SOC FPGA ArChitECIUMEueeiiiiiieii et 12
3.2.1 The Secure Device Manager (SDM)cooiiiiiiiiiiiiee e 12
K |V | U B O 11T =Y SRS 13
3.2.3 HPS/FPGA BIAGES ...eiiitieiiiieitet ettt ettt ettt be e e ene e 13
3.3 AXES5-Eagle Golden System Reference Design (GSRD)evviiiiiiiiiiiiiieiee e 14
3.4 AXE5-Eagle Golden Hardware Reference Design (GHRD)........coociiiiiiiiiiiiiiiiee e 14
3.5 Agilex 5 SOC FPGA BOOt OVEIVIEW.uiiiiiiieiiiiii ittt e e e e e e 17
3.5.1 FPGA Configuration First MOAEooiiiiiiiiii e 17
3.5.2 HPS BOOt FIrSt IMOGE ...ttt e e e e e e e e e e et eeeaeeeeennnes 18
3.5.3 FPGA Configuration First Mode — Detailcooiiiiiiiiiii e 18
3.6 System Layout for HPS Boot First Mode............ooiiiiii e 22
3.6.1 Dual FIash System......coo et e e e e e e 22
3.7 ThEe HPS BOOE FIOW ..ottt ettt e e e e e e et e e e e e e e e nntaeeeeaaeeeennnnes 22
3.8 The HPS BOOt SEQUENCEeeiiiiiiiii ittt ettt e e e e eneeeeeees 25
3.8.1 EXCepion LEVEIS. ... 25
3.8.2 AM TIUSIZONE ...ttt ettt e e e e e et e e e e e e e e e annbeeneeeaeeeaannnes 26
3.8.3 Arm Trusted Firmware (ATF), Boot Loader Stage 3-1 (BL31)cccvviiiiiiieiiiieeeeeee 29

4 HPS Customizationoiiiiiiiieee e e e 31
4.1 HPS FPGA INTEIACES ... eeiiieei ittt e e e e e e e e s et e e e e e e e ensnrneeeaae e s 33
4.1.1 FPGA to SDRAM Bridge (F2SDRAM)......cuuiiiiiiiiie ettt ee et seeeesnee e naeeesneee e 34
4.1.2 Lightweight HPS to FPGA Bridge (LWH2F)oiiiiiiie e 35
4.1.3 HPS t0 FPGA Bridge (H2F)ccieiieiieiie ettt e 36
414 FPGA t0 HPS Bridge (F2H) ...ooiieiieiieeeie ettt e e nneee e 36
4.2 HPS Clocks, RESEtS, POWENcoiiiiiiiiiie et 38
g T 1 o 10) A7 o T2 (< S 38
4,22 PLL CIOCKS ...ttt ittt ettt ettt ettt e et e e em e e et e e ameeeamee e e seeeenteeeneeeaneeeeaneeeaneeeans 38
4.2.3 POWET & RESEISoiiiiiiiiiie ittt 39

Five Years Out Page|3 arrow.com

,\M\I AXES5-Eagle Create a Linux Boot Image

4.3 Pin Mux and Peripherals ... 39
4.3.1 Advanced IP Placementoooiiiiiiiii e 40
4.3.2 Advanced FPGA PlaCcemeNntcooo it e e e e e eaa e 42

5 Creating a Bootable Image........ ... 43

5.1 L0700 (ST =T o0 1S 1 (o4 =TS 45

5.2 Launch the Oracle VirtualBox Linux Virtual Machinecccooiiiiiiiiiieee e 46
5.2.1 Launch the VirtualBox based Ubuntu 22.04 LTS Virtual Machine.ccccocceeviienennnn. 46
5.2.2 Copy and paste QUIAE...........ueiiiiiiiiiiieeie e a e 46
5.2.3 HOSE PASSWOI ...ttt ettt e e et e e e ettt e e e et e e e e anbee e e e nnees 47
5.2.4 VirtUaIBOX MENU Bar......cc ettt e e e e e e e e e e e s e s eeeeeeaeeeeannnes 47

53 Setup the build eNVIFONMENT...........uuiiiiiii e 47

5.4 Arm Trusted FIrmware (BL3T)coouiiieiiiie ettt e e e e e e e e snaeae s 47

55 Lo T T | SR 48
ST TR B« 1= e o T TSRS 48
B5.5.2 DBVICEIMEO. ...ttt et e e e e s e e e e e e e nne 48
5.5.3 CoMPIIE U-DOOL......ooiiiiiiiiiiieee et e e e e e e e e e e e e e e e e e aaaes 49

5.6 T o U 51
B5.6.1 dEICONTIG .eeeiiiiiii e 51
LG B LoV To 1 (== PSP PERP 51
5.6.3 Compile LINUX ..cooiiiiiiieieeeeeeeeee 51

5.7 Create a Linux Root File System (rootfs) with YOCIO.........cceiiiiiiiiiiiiiiie e 53

5.8 Create the FPGA Configuration Bitstream Imageccociiiiiiiiiiiiie e 54

59 Create the SD Card IMagecoo it e e e 56
5.9.1 Write the SD Card iMageuueiii ittt e e e e e e e e e e e e e annes 57

510 Configure the DOAId...........oiiiiiiie et 59
5.10.1 Configure the MSEL DIP SWIlCESueiiiiiiiiieiiii e 59
5.10.2 Assemble the HardWare e e e e 59

511 Connect to the target terminaloooi oo 60

512 BoOt the LinUX IMage.........ceeiiiiiieii ettt e e e e e e e e e e e e eas 60
5.12.1 Enable the Arrow Blaster in the VirtualBox VM ... 60
5.12.2 Download the FPGA configuration fileccoiiiiiiiiiiiiii e 61
5.12.3 Download the SOF file......uuuiiiiiiii ittt e e e s e s reaa e e e e ennnes 62

513 View the LiNUX BOOt LOG eeiiiiieiiiiii ittt e e e e e e e e e e 62

514 Turn RGB LEDS ONn and Off ...t e e e 64
5.14.1 Access the LEDS from Linux USing deVMEM2cooiiiiiiiiiiee et e e 66
5.14.2 Specify each LED in LiNUX @S @ AEVICEccoiuiiiiiiiiei e 66
5.14.3 Defining the RGB LEDs as devices on the AXE5-Eagle board.............cccceoviiiiiiiiiiiennnn. 67

5.14.4 Access the LEDS from LiNUX @S ABVICES.........cieieeiiieeee e 69

I.\N.\E\IV AXES5-Eagle Create a Linux Boot Image

6 AdAItIONAl RESOUICES ... 70
7 Legal DiSClaIMETuuiiiiiiiiiiiii e 71

Five Years Out Page I 5 arrow.com

AWVV AXE5-Eagle Create a Linux Boot Image

1 Introduction

This lab provides comprehensive information showing the steps that an Agilex™ 5 SoC
FPGA takes from power on to booting the Linux operating system.

You will review
e The architecture of the Agilex 5 SoC FPGA
e The AXE5-Eagle Golden System Reference Design (GSRD)
e The AXE5-Eagle Golden Hardware Reference Design (GHRD)
e The Agilex 5 SoC FPGA Configuration modes
e The HPS Boot flow

e The Linux Boot log from a successful boot sequence.

You will learn
e How to customize the Hard Processing System (HPS)

e About the different boot stages that the Secure Device Manager (SDM) and the
HPS transition through to reach the Linux prompt.

e About the software required for the HPS Boot flow

e How to source and compile each of these software components.

e How to create a bootable Linux image.

e How to create a custom, flashable, FPGA image required by the SDM.

e How to run the bootable Linux image on an AXE5-Eagle board.

1.1 Readers Guide

If you are new to Agilex™ 5 SoC FPGAs and building Embedded Linux images, it is
recommended that all sections of this document are read. Portions of section 3 and 4
can be disregarded depending on the readers’ familiarity with the topic.

N\ROW

AXE5-Eagle Create a Linux Boot Image

Abbreviations are referenced throughout the lab document. Use the list below for
expansions/definitions of these abbreviations.

1.2 Definitions

ARM Originally an abbreviation of Acorn RISC Machines

ARMvV7-A ARM version 7 for 32-bit Cortex A architecture devices

ARMv8-A ARM version 8 for 64-bit Cortex A architecture
devices

ATF Arm Trusted Firmware

BL31 ATF Boot Loader section 3-1

CMF Configuration Management Firmware

CPU Central Processing Unit

DSU ARM DynamiclQ Shared Unit

DTB Device Tree Blob, binary version of Device Tree source

ECC Error Checking and Correction

EL1, EL2, EL3, ARM Exception Levels 1to 4

EL4

EMAC Ethernet Media Access Controller

EMIF External Memory Interface

eMMC Embedded Multi Media Card

EOSC External Oscillator

F2H FPGA to HPS

F2SDRAM FPGA to SDRAM

FAT File Allocation Table

FIT Flattened Image Tree

FIQ Fast Interrupt Request

FPGA Field Programmable Gate Array

FSBL First Stage Boot Loader

GB Giga Byte

GHRD Golden Hardware Reference Design

GIC Generic Interrupt Controller

GPIO General Purpose Input Output

GSRD Golden System Reference Design

H2F HPS to FPGA

HPS Hard Processing System

10 Input Output

IP Intellectual Property

ITS Image Tree Source

ITB Image Tree Blob, binary version of ITS

JIC JTAG Indirect Configuration

JTAG Joint Test Action Group

Five Years Out

Page|7

arrow.com

AWVV AXE5-Eagle Create a Linux Boot Image

KB Kilo Byte

L1,L2, L3 Level 1,2 or 3 cache memory

LPDDR4 Low Power DDR4

LSM SDM Local Sector Manager

LWHZ2F Lightweight HPS to FPGA

LZMA Lempel-Ziv-Markov chain Algorithm

make Utility to control the generation of executable code
MB Mega Byte

mkimage Utility used to create images for use with U-boot
MPU Micro Processor Unit

MUX Multiplexer

NS Non-secure

0S Operating System

OTG On The Go

PDD Platform Design Document

PSCI Power State Coordination Interface

PLL Phase Lock Loop

POR Power On Reset

QSPI Quad Serial Peripheral Interface

RAM Random Access Memory

ROM Read Only Memory

SD Secure Digital

SDM Secure Device Manager

SDRAM Synchronous Dynamic Random Access Memory
SOC System on Chip

SEU Single Event Upset

SPI Serial Peripheral Interface

SPIM SPI Master

SPL Secondary Program Loader

SSBL Second Stage Boot Loader

TBBR Trusted Board Boot Requirements

TEE Trusted Execution Environment

UART Universal Asynchronous Receiver Transmitter
UIMG U-boot Image

AXE5-Eagle Create a Linux Boot Image

N\ROW

2 Getting Started

The first objective is to ensure that you have all the necessary items so that the lab can
be completed successfully. Below is a list of items required to complete this lab:

e Personal computer or laptop running 64-bit Windows 10 or later with at least an
Intel i3 core (or equivalent), 8GB RAM.

e The build environment will be provided on a VirtualBox Virtual Machine, running
Ubuntu Linux 22.04 LTS. Refer to the installation guide for details.

e Adesire to learn!

Five Years Out Page I 9 arrow.com

AXES5-Eagle Create a Linux Boot Image

NA\RNOW/
3 Agilex™ 5 SoC FPGAs

3.1 Agilex 5 Family of Devices

Agilex™ 5 FPGA Portfolio

E-Series E-Series D-Series Device
Device Group B Device Group A

.
Agl'exTM 5 Logic Density Logic Density lOEIC Denst;;y
138k LE-656k LE 103k LE-644k LE

50k LE-656k LE

Common Features

28G Transceivers 28G Transceivers

PCle 4.0 x4 and 25GbE PCle 4.0 x4/8 and 25GbE
(MAC+PCS) Hard IP (MAC+PCS) Hard IP

Increased DSP/M20K Ratio

Smaller Form Factor/ Lower Power Higher Performance / More Capabilities

Figure 3-1 : Agilex 5 Family of Devices

Three major variants are offered in the Agilex 5 Product family.
e D series
e E Series, Group A
e E Series, Group B

3.1.1 ESeries, Group B
Power Optimized FPGA with IO Only- these are the smallest devices in the family that
are meant for the most power efficient applications. These will have 10 only- no ARM
processor or transceivers.
Power Optimized FPGA with HPS - these devices will have a quad core ARM option
and 17G transceivers. These devices are for mid-range applications that will need an
ARM processor and other peripherals.

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

3.1.2 ESeries, Group A

Performance Optimized FPGA with HPS - These are the highest-performance devices
in the E Series family. These devices have a higher fabric speed and a 28G transceiver
option, along with the quad core ARM processor.

3.1.3 D Series

Performance Optimized FPGA with HPS - These are the highest-performance devices
in this family. These devices have the highest fabric speed, highest external memory
speeds and a 28G transceiver option, along with the quad core ARM processor.

The AXE5-Eagle board uses an E -series, group B device that includes a quad core

ARM and transceivers.

Five Years Out Page I T arrow.com

AXE5-Eagle Create a Linux Boot Image

N\ROW

3.2 Agilex™ 5 SoC FPGA Architecture

The Agilex™ 5 system-on-a-chip (SoC) is composed of two distinct portions: a dual-
core Arm Cortex-A76 and dual-core Arm Cortex-A55 Hard Processor System (HPS),
and a FPGA. The HPS architecture integrates a wide set of peripherals that reduces
board size and increases performance within a system. A short description of some
key sections of the HPS is provided below.

FPGA Core

F2SORAMI TBU 2

F2H
F2SDRAM Bridge

Bridge

| 10Bank 0| | 10Bank 1] GG 48PS 1105
WPy imiﬁ
(OCRAM, USB, PHY
IEEE'E 'IZE%B T%%EE]St%EE 2 = EMAGY) =y SOMMC
z = [owacasn | SERDES
DSU [EE g g < PHY
g 2| 81 Channel
¢ Multichannel
APS Watchdog DMA
OCRAM

System Modules

(Clock Serial
Manager | Controller
Seaure

Tt CoreSight
Manager || Manager

(DAP, STM, ETR)

o PSSNOC
SMMU (L3 Main Interconnect) iii oM
ik
MPFE NOC < U — <

Power
Manager

[em
A?Ig;[ager

User Design Logic

y
‘ LWH2F H H2F ‘

Figure 3-2 : Agilex 5 Architecture

3.2.1 The Secure Device Manager (SDM)

All Agilex™ 5 FPGAs and SoCs contain an SDM. The SDM is a triple-redundant
processor that serves as the point of entry into the device for all JTAG and
configuration commands.

The SDM bootstraps the HPS in Agilex™ 5 SoCs. This bootstrapping ensures that the
HPS boots using the same security features available to the FPGA.

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

3.2.2 MPU Cluster
The MPU Cluster includes the following features:

e Two Arm Cortex-A55 core with 32 KB L1 instruction cache and data cache per
core and a unified 128 KB L2 cache per core

e Two Arm Cortex-A76 core with 64 KB L1 instruction cache and data cache per
core and a unified 256 KB L2 cache per core

e DSUwith 2 MB L3 cache
e Hardware cache coherency maintained using the L3 memory system
e ECC support for L1, L2 and L3 memories

e Static power-gated domains for Cortex-A55 and Cortex-A76 cores

3.2.3 HPS/FPGA Bridges
Bridges are used to move data between the FPGA fabric and HPS logic.

The Lightweight-to-FPGA (LWHZ2F) bridge extends the HPS peripherals to the FPGA
like the H2F. However, the LWHZ2F is meant for a narrower (32-bit data bus) use case
involving simple peripherals on the FPGA, where latency is prioritized over
bandwidth. The LWHZ2F bridge is meant for strongly ordered single transactions.

This allows usage of the LWHZF as the configuration bus for FPGA IPs. The FPGA IP
can then make use of H2F or F2H/F2SDRAM as the main data mover bus.

The HPS-to-FPGA (H2F) bridge extends the HPS peripherals to the FPGA. Additional
IPs implemented on FPGA can be used as part of the HPS subsystem. The H2F bridge
can also be connected to another 256GB of FPGA SDRAM, extending the amount of
physical memory available to HPS.

The FPGA-to-HPS (F2H) bridge provides a way for initiators (IPs, accelerators) in the
fabric to access HPS peripherals, which makes the peripherals extensions of the
FPGAsystem.

The FPGA-to-SDRAM (F2SDRAM) bridge provides the asynchronous clock domain
crossing logic for the F2SDRAM port from the fabric. The primary traffic is
transactions to the DRAM subsystems from all the fabric agents.

Five Years Out Page I 13 arrow.com

AWVV AXE5-Eagle Create a Linux Boot Image

3.3

3.4

AXE5-Eagle Golden System Reference Design (GSRD)

The AXE5-Eagle Golden System Reference Design is a thoroughly tested known good
design showcasing a system using both HPS and FPGA resources, intended to be used
as a baseline project.

The GSRD is comprised of the following components:
e Golden Hardware Reference Design (GHRD)
e Reference HPS software including:
o Arm Trusted Firmware
o U-Boot
o LinuxKernel
o Linuxdrivers
o Sample applications

The current GSRD uses FPGA-First configuration mode.

AXE5-Eagle Golden Hardware Reference Design (GHRD)

The AXE5-Eagle GHRD, part of the AXE5-Eagle Golden System Reference Design
(GSRD), is an Intel® Quartus® Prime project that contains a full HPS design for

the Arrow AXE5-Eagle board. The GHRD has connections to a boot source, SDRAM
memory and other peripherals on the development board.

You must always use a hardware design with the Intel® Agilex™ SoC if you choose to
take advantage of the HPS features. The purpose of the hardware design is to
configure the SoC, including the FPGA portion, the HPS pin multiplexers and 1/Os, and
the SDRAM. All software projects depend on a hardware design.

The GHRD is regression tested with every major release of the Quartus Prime Design
Suite (QPDS) and includes the latest bug fixes for known hardware issues. As such,
the GHRD serves as a well-known configuration of a SoC FPGA hardware system.

GUIDELINE: Use the latest GHRD as a baseline for new SoC FPGA hardware projects.
You may then modify the design to suit your end application needs.

I\W\I\I AXE5-Eagle Create a Linux Boot Image

A block diagram of the GHRD is shown in figure 3-3 below. The design is constructed
using the Altera Platform Designer tool. The GHRD is constructed as a hierarchical
design. The GHRD represents the top level, with a number of subsystems.

AXES-Eagle IC
Golden Hardwiare MPU Connectors
Reference Design

A-TE A-TG A5 A-55
G4KEL11S | B4KEL1 13 IZKEL1IE | 3ZKEL1IS
B4KBL1DS | 64KEL1D§ || 32KBL10DS | 32KB L1 D%
256KB 125 | 256KB L2% 120KBL25 | 120KE L25

£ 3

Dsu
2MB L3 Cache

CLOCKS
EEPROM
TEMP
PB/SW GPIOA -

GPIOB 1
RI45/Mag - On-Chip RAM

Systemn
0SC TIMER =2 Module
USB3.1 PIPE3

HUB 'USB USB3 1 ULPI
PHY

=

2

Micro SD

R

UART=USE

9
P CGRERG

QSPI

:

—
2 w

Multi-Ch DMA x2

5 5 M M
2F32/641128) | LW_H2F32 F2H25% FZHDRAM
[L 5 M

emif_bank3a_hps 1 32)

[2C1
o |
UARTT |
ELN

LFDDR4

1 GB (256M x 32)

=

i

Figure 3-3 : GHRD Block Diagram

Five Years Out Page I 15 arrow.com

N\ROW

AXE5-Eagle Create a Linux Boot Image

The following subsystems are included in the GHRD:

Board
O
Clock

O

HPS

EMIF

Board level reset and clock inputs

Includes a Phase Lock Loop that generates clocks for all clock domains
in the design. Each clock has an associated, synchronous reset.

This subsystem includes the customized HPS section, the HPS EMIF
controller and a JTAG interface for use with System Console.

This subsystem adds an additional EMIF controller. This can be
mastered from the FPGA fabric or from the HPS.

Peripheral

O

This is a collection of FPGA fabric GPIO peripherals used for controlling
LEDs and reading pushbutton and DIP switch inputs. It also includes
two GPIOs used for releasing the Ethernet PHY and USB PHY from
reset.

Ethernet

O

Video

O

An additional HPS EMAC is routed through the FPGA and connected to
the second set of ethernet hardware on the board.

The AXE5-Eagle includes an ADV7511 HDMI PHY output device. This
can be used by a Nios V soft processor or the HPS ARM cores running
Linux. It can be used to provide a graphical desktop for Linux in
conjunction with a USB keyboard and mouse. The subsystem includes a
DMA used for reading video from a framebuffer and writing it to an
HDMI peripheral. The HDMI peripheral manipulates the raw video data
into a format compatible with the ADV7511 PHY.

The GHRD top level in Platform Designer can be viewed in Figure 3-4.

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

:: System Wiew 3% | Address Map 5% | Exported Interfaces X | Details %
System: ghrd_systern Path: hps_subsystem

[/@& [|| [#@] C1show subsystem modules [Hide unconnectable interfaces

lE‘ Use Connections Name Description Export Clack Base End IRQ
lj‘ B I board_subsystem board_subsystem
C— = iclk Clock Input sys_clk exported
- o_clk Clock Output board_sub
(=2 B= i reset ph n Reset Input reset pb n
—_— -4 o_reset Reset Output [i_clk]
E B clock subsystem clock subsystem
|Z| —_— -8 o_rst_200m Reset Output clock_sub..
— -a o_clk_200m Clock Output clock_sub
= clk Clock Input board_su...
B3] # ia_board_reset Reset Input
— - clk_148_5m Clock Output clock_sub
<H =& clk_148 Sm_n Clock Qutput hdmi_clk clock_sub..
B i hps_subsystem hps_system
= clk Clock Input clock_su...
C~ = emif_bank3a_hps_ref_clic Clock Input emif_bank3a_hps_reF...|exported
H -8 emacO_app_rst Reset Output emac0_app_rst
<H -8 emac2_app_rst Reset Output emac2_app_rst
< =a spim0_sclk_out Clock Output spim0_sclk_out hps_subs
(=2 m= i2cl_scl i Clock Input izcl_scl i exported
<H -ai2cl_sc_oe Clock Output i2cl_scl_oe hps_subs
o ®= usb31 _phy pma_cpu_clk Clock Input usb31_phy pma_cpu... exported
C— ®= ush3l _phy refclk _p Clock Input usb31_phy_refclk p exported
O~ = ush3l_phy_refclk_n Clock Input usb31_phy_refclkn |exported
(=S m= ush3l_phy reconfig_rst Reset Input usb31_phy reconfig_...
C~ ®= ush31_phy_reconfig_clk Clock Input usb31_phy_reconfig_...|exported
B reset Reset Input [clk]
B i emif_subsystem emif_subsystem
= sys_clk Clock Input clock_su...
=2 m= emif_bank2a_fpga_ref clk Clock Input emif bank2a fpga re...|exported
= sys_reset Reset Input [sys_clk]
B [ethernet_subsystem ethernet_subsystem
= clk Clock Input clock su...
»= clock_25m Clock Input board_su...
= reset Reset Input [clk]
@ fpoa_only_master ITAG to Avalon Master Bridge Intel F...
- clk Clock Input clock su...
= clk_reset Reset Input
=8 master_reset Reset Output
Bl ¥ peripheral_subsystem peripheral_sys
= clic Clock Input clock_su...
B reset Reset Input [clk]
B i video_subsystem video_sys
+——>| = hdmi_clock_in Clock Input clock_su...
-~ = sys_clock Clock Input clock_su...
= sys_reset Reset Input [sys_clock]

Figure 3-4 : GHRD Top level view in Platform Designer

3.5 Agilex 5 SoC FPGA Boot Overview

The Agilex 5 SoC FPGA combines an FPGA with a hard processor system (HPS) that is
capable of booting operating systems such as Linux and Zephyr. When booting the
device from a power-on reset (POR), you can choose between two different methods
of booting.

3.5.1 FPGA Configuration First Mode

When you select the FPGA First option, the SDM fully configures the FPGA, then
configures the HPS 10 and HPS EMIF controller, loads the HPS first-stage bootloader
(FSBL) and takes the HPS out of reset. Note: The FPGA and all of the IOs are fully
configured before the HPS is released from reset. Thus, when the HPS boots, the
FPGA is in user mode and is ready to interact with the HPS.

Five Years Out Page I 17 arrow.com

AXE5-Eagle Create a Linux Boot Image

N\ROW

3.5.2 HPS Boot First Mode

When you select the HPS First option, the SDM first configures the HPS 10 and HPS
EMIF controller, loads the HPS FSBL and takes the HPS out of reset. Then the HPS
configures the FPGA |0 and FPGA fabric at a later time. Note: This mode is also
referred to as Early 10 Release Mode or Early IO Configuration. After power-on, the
device configures a minimal amount of 10 required by the HPS before releasing the
HPS from reset. This mode allows the HPS to boot quickly without having to wait for
the full configuration to complete. Subsequently, the HPS may trigger an FPGA
configuration request during the SSBL or OS stage.

The GSRD currently uses the HPS Boot First Mode.

3.5.3 FPGA Configuration First Mode - Detail

Figure 3-4 shows the boot stages of the Agilex 5 device from POR all the way to a
user application running on an operating system.

Table 1 provides more detail on each boot stage.

T T T Tj L Ts Tﬂun’._(:l“:lse

(POR —»{ SDM —» B = SBL = 05 F{Application]

SDM Initiali zation
HPS Initi alizati on
FPGAI/O &
Core Configuration

.

HPS EMIF 1/0 Configuration

A 4

[- | PeAI0 || FPGACore ﬂ

Figure 3-5 : HPS First Boot Flow

AWVV AXE5-Eagle Create a Linux Boot Image

Time Boot Stage Device State
Tror POR Power-on reset
Ty to T, SDM- Boot ROM 1. SDM samples the MSEL pins to determine the configuration and boot source. It

also establishes the device security level based on eFuse values.
2. SDM firmware initializes the device.

3. SDM authenticates and decrypts the bitstream (this process occurs as
necessary throughout the configuration).
TotoTs SDM- 1. SDM configures the HPS EMIF 1/O and the rest of the user-configured SDM I/O.
Configuration 2. SDM loads the FSEL from the bitstream into HPS on-chip RAM.
Firmware 3. HPS boot core start executing FSBL code.
4. SDM enables HPS SDRAM I/O and optionally enables HPS debug.
5. HPS is released from reset.
Tato Ty First Stage 1. The FSBL initializes the HPS, including the SDRAM.

Bootloader (FSBL) | 2, FSBL obtains the SSBL from HPS flash or by requesting flash access from the
SDM.

3. FSBL loads the SSEL into SDRAM.

4. HPS peripheral IfO pin multiplexer and buffers are configured. Clocks, resets
and bridges are also configured.

5. HPS I/O peripherals are available.
6. HPS bootstrap completes.

TatoTs Second Stage After bootstrap completes, any of the following steps may occur:

Bootloader (SSBL) | 1, The FPGA core configuration loads into SDRAM from one of the following
sources:

* SDM flash
* HPS alternate flash
s EMAC interface
2. HPS requests that the SDM configures the FPGA core.
Note: This step is applicable for U-Boot ATF Linux boot only. For ATF Linux

Boot and ATF Zephyr Boot, the FPGA configuration happens in the next
stage.

3. FPGA enters user mode.
4. 0S is loaded into SDRAM.

Ts to Operating System 1. 0OS boot occurs and the OS schedules applications for runtime launch.
Teoot_complate (os) 2. (Optional step) The OS initiates FPGA configuration through a secure monitor
call (SMC) to the resident SMC handler (typically SSBL), which then initiates
the request to the SDM.

Table 1 : FPGA Configuration First Stages

The sections following this table describe each stage in more detail.

3.5.3.1 Power-On Reset (POR)

Ensure you power each of the power rails according to the power sequencing
consideration until they reach the required voltage levels. In addition, the power-up
sequence must meet either the standard or the fast power-on reset (POR) delay time.

3.5.3.2 Secure Device Manager

The Secure Device Manager (SDM) is a triple-redundant processor-based module
that manages configuration and the security features of Agilex 5 devices. The SDM is
available on all Agilex 5 devices. The block diagram below provides an overview of
the Agilex 5 configuration architecture which includes the following blocks:

e SDM: More information about the SDM is contained in later sections.

Five Years Out Page I 19 arrow.com

,\.IWVV AXE5-Eagle Create a Linux Boot Image

e Configuration network: The SDM uses this dedicated, parallel configuration
network to distribute the configuration bitstream to Local Sector Managers
(LSMs). You cannot access this network.

e LSMs: The LSM is a microprocessor. Each configuration sector includes an LSM.
The LSM parses configuration bitstream and configures the logic elements for
its sector. After configuration, the LSM performs the following functions:

- Monitors for single event upsets at the sector level
- Processes responses to single event upsets (SEUs)
- Performs integrity checks in user mode
AgilexsPPGA

| Secure Device Manager

—4 | SDMPins | |Dual Purposel/0] pmim——

‘ Configurable Network Interface ‘

Configuration Network
I I . 0

! Local Sector Local Sector Agilex 5 Blocks
! Manager (LSM) Manager (LSM) (Al Family Variants)
! Configuration| |Configuration

Sector Sector . e
i Loaal Sector Local Sector
| Manager (LSM) Manager (LSM)
e |Configuration| |Configuration

* Sector Sector

Figure 3-6 : Agilex 5 Configuration Architecture Block Diagram

Once the Agilex 5 SoC FPGA exits POR, the SDM samples the MSEL[2:0] pins to
determine the boot source. Next, the device configures the SDM I/Os according to the
selected boot source interface and the SDM retrieves the configuration bitstream
through the interface. The typical configuration bitstream for HPS boot first mode
contains:
e SDM configuration firmware HPS external memory interface (EMIF) I/O
configuration data HPS FSBL code and FSBL hardware handoff binary data

The SDM completes the configuration of the HPS EMIF 1/0 and then copies the HPS
FSBL to the HPS on-chip RAM.

3.5.3.3 First-Stage Bootloader

After the SDM releases the HPS from reset, the FSBL initializes the HPS. Initialization
includes configuring clocks, HPS dedicated I/Os, and peripherals.

AWVV AXE5-Eagle Create a Linux Boot Image

In HPS first boot mode, the SDM, HPS OSC and HPS EMIF clocks must be running
stable and set at the correct frequency before you begin any part of the configuration
sequence.

In HPS first boot mode, phase 1 configuration is successful as long as HPS OSC and
HPS EMIF clocks are running stable.

You can create the FSBL from one of the following sources:
e U-Boot secondary program loader (SPL)
e Arm Trusted Firmware
3.5.3.4 Second-Stage Bootloader

The second-stage bootloader (SSBL) is the second boot stage for the HPS. The FSBL
initiates the copy of the SSBL to the HPS SDRAM. The SSBL typically enables more
advanced peripherals such as Ethernet and supports a command line interface.

You can create the HPS SSBL from one of the following sources:

e U-Boot secondary program loader (SPL)
e Arm Trusted Firmware

You can optionally perform FPGA core and 1/O configuration in during the SSBL
stage. The SSBL copies the FPGA configuration files from one of the following
sources to the HPS SDRAM:

e HPSFlash
e SDM Flash
e External host via the HPS Ethernet (for example, TFTP)

After the SSBL copies the FPGA configuration files to the HPS SDRAM, the SSBL can
initiate a configuration request to the SDM to begin the configuration process.

3.5.3.5 Operating System

Typically, the SSBL loads the operating system (OS) stage into SDRAM. The OS
executes from SDRAM. Depending on your application requirements, you may
implement a conventional OS or an RTOS.

3.5.3.6 Application
The application that runs on the OS is the last boot stage.

Five Years Out Page I 21 arrow.com

,\N.\EVV AXE5-Eagle Create a Linux Boot Image

3.6 System Layout for HPS Boot First Mode

The following section describes the supported system layout for HPS Boot First mode.
The OS is assumed to be Linux, but you may replace Linux with other supported
operating systems.

3.6.1 Dual Flash System

In a dual flash system, the SDM flash stores the configuration bitstream, while the
HPS flash stores the HPS SSBL and the rest of the OS files.

SDM Flash Type HPS Flash Type

Active serial/Quad SPI SD/eMMC

Table 2: Dual Flash Combination (SDM and HPS)

SDM Hash SoC HPS SD Card
Bitstream FAT
SDM Configuration . HPS SSBL
Firmware i SecureDevice Loyl Hard Processor System (HPS) [«
Manager (SDM)
HPS EMIF1/0 Kernel Image
&D1B
HPS FSBL
FPGA Core & 1/0
Configuration
FPGA (optional)
05 File System
FPGA Core & 1/0
(onfiguration
(optional)

Figure 3-7 : Dual Flash Devices (SDM and HPS)

3.7 The HPS Boot Flow
The following section introduces the boot flows supported by the HPS.

There are 3 boot flows supported:
e U-Boot, ATF, Linux Boot

I.\N.\E\IV AXES5-Eagle Create a Linux Boot Image

o U-Boot SPL » ATF BL31» U-Boot » Linux
e ATF, Linux Boot

o ATFBL2 » ATF BL31 » Linux
e ATF, Zephyr Boot

o ATFBL2 » ATF BL31» Zephyr

U-Boot SPL is also known as the First Stage Boot Loader (FSBL).
ATF BL31 includes functionality known as the Secure Monitor.

U-Boot is also known as the Second Stage Boot Loader (SSBL).

The AXE5-Eagle board utilizes the U-Boot, ATF, Linux Boot flow.

The following figure shows the overview of the HPS Boot Flow using a U-Boot as HPS
Bootloader to boot to the Linux OS.

SOM HPS

— BootHow
——* Linuxcan communicate to SDM to access FPGA features through ATF

Figure 3-8 : HPS Boot flow

The boot flow is described in steps below:

e The Configuration Management Firmware (CMF), which is a part of the
configuration bitstream, running on the SDM loads the FSBL, which is U-Boot
SPL, into HPS On-Chip RAM and then brings the HPS boot core out from reset.

e The U-Boot SPL loads the SSBL, which is ATF BL31 and U-Boot proper (SSBL),
into DDR.

Page |23

Five Years Out arrow.com

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

e The U-Boot SPL jumps to ATF BL31.

e ATF BL31sets up the GIC, EL3 environment, and initializes the PSCl services.
PSCl services in ATF remain active or available once ATF jumps to U-Boot.

e ATF BL31jumps to the U-Boot proper.
e U-Boot loads the Linux OS into the DDR.
e U-Boot jumps to the Linux OS.

e Note: U-Boot proper and the Linux OS can access the SDM FPGA features
through ATF BL31 through the Arm Secure Monitor Call (SMC).

I.\N.\E\IV AXES5-Eagle Create a Linux Boot Image

3.8 The HPS Boot Sequence

To understand the HPS boot sequence it is important to understand the concept of
privilege and exception levels with respect to the Armv8-A (also known as AArch64)
processor architecture.

Modern software is developed to be split into different modules, each with a different
level of access to system and processor resources. An example of this is the split
between the operating system kernel and user applications. The operating system
needs to perform actions which we do not want a user application to be able to
perform. The kernel needs a high level of access to system resources, whereas user
applications need limited ability to configure the system. Privilege dictates which
processor resources a software entity can see and control.

The AArch64 architectures enable this split by implementing different levels of
privilege. The current privilege level can only change when the processor takes an
exception or returns from an exception. Therefore, these privilege levels are referred to
as Exception levels in the Arm architecture.

3.8.1 ExceptionLevels

The name for privilege in AArch64 is Exception level, often abbreviated to EL. The
Exception levels are numbered, normally abbreviated and referred to as EL<x>,
where <x> is a number between 0 and 3. The higher the level of privilege the higher
the number. For example, the lowest level of privilege is referred to as ELO.

ELO Application
o F N ©
o 8o
D
g e .
5 5
2 »
qf, EL2 Hypervisor §
9 v}
a £
A 4
EL3 Firmware / Secure Monitor

Figure 3-9 : Exception Levels

The architecture does not specify what software uses which Exception level. A
common usage model is application code running at ELO, with a rich Operating

Five Years Out Page I 25 arrow.com

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

System (OS) such as Linux running at EL1. EL2 may be used by a hypervisor, with EL3
used by firmware and security gateway code.

For example, Linux can call firmware functions at EL3, using software interface
standards, to abstract the intent from the lower-level details for powering on or off a
core. This model means the bulk of PE processing typically occurs at ELO/1.

The Exception level can only change when any of the following occur:
e Taking an exception
e Returning from an exception
e Processorreset
e During Debug state
e Exiting from Debug state

When taking an exception, the Exception level can increase or stay the same. You can
never move to a lower privilege level by taking an exception. When returning from an
exception the Exception level can decrease or stay the same. You can never move to

a higher privilege level by returning from an exception.

3.8.2 Arm Trustzone

TrustZone is the name of the Security architecture in the Arm A-profile architecture.
First introduced in Armv6K, TrustZone is also supported in Armv7-A and Armv8-A.
TrustZone provides two execution environments with system-wide hardware
enforced isolation between them, as shown in this diagram:

Trusted

Trusted Services

Normal

Figure 3-10 : Normal and Trusted worlds

Trusted OS

3.8.2.1 Normal and Trusted worlds

The Normal world runs a rich software stack. This software stack typically includes a
large application set, a complex operating system like Linux, and possibly a
hypervisor. Such software stacks are large and complex. While efforts can be made to

I.\N.\EVV AXES5-Eagle Create a Linux Boot Image

secure them, the size of the attack surface means that they are more vulnerable to
attack.

The Trusted world runs a smaller and simpler software stack, which is referred to as a
Trusted Execution Environment (TEE). Typically, a TEE includes several Trusted
services that are hosted by a lightweight kernel. The Trusted services provide
functionality like key management. This software stack has a considerably smaller
attack surface, which helps reduce vulnerability to attack.

3.8.2.2 Secure and Non-secure states

In the Arm architecture, there are two Security states: Secure and Non-secure. These
Security states map onto the Trusted and Normal worlds.

At ELO, EL1, and EL2 the processor can be in either Secure state or Non-secure state,
which is controlled by the SCR_EL3.NS bit. You often see this written as:

e NS.ELT: Non-secure state, Exception level 1
e S.ELT: Secure state, Exception level 1

EL3 is always in Secure state, regardless of the value of the SCR_EL3.NS bit. The
arrangement of Security states and Exception levels is shown here:

Non-secure Secure
SCR_EL3.NS==1 SCR_EL3.NS==0

|
|
ELO |
|

Trusted Services

EL1 Trusted OS

EL2 Secure partition manager
)

EL3 Firmware / Secure Monitor

Figure 3-11 : Secure and Non-secure states

Five Years Out Page I 27 arrow.com

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

3.8.2.3 Switching between Secure States

To change Security state, in either direction, execution must pass through EL3, as
shown in the following diagram:

Non-secure Secure

Trusted Services

(1) Exceptlton (3) Exception
cau;;e;fg ry return to EL1

Figure 3-12 : Switching between states

The preceding diagram shows an example sequence of the steps involved in moving
between Security states. Taking this one step at a time:

e Entering a higher Exception level requires an exception. Typically, this
exception would be a FIQ or an SMC (Secure Monitor Call) exception.

e EL3isentered at the appropriate exception vector. Software that is running in
EL3 toggles the SCR_EL3.NS bit.

e An exception return then takes the processor from EL3 to S.EL1.

There is more to changing Security state than just moving between the Exception
levels and changing the SCR_EL3.NS bit. We also must consider the processor state.

There is only one copy of the vector registers, the general-purpose registers, and
most System registers. When moving between Security states it is the responsibility
of software, not hardware, to save and restore register state. By convention, the piece
of software that does this is called the Secure Monitor. This makes our earlier
example look more like what you can see in the following diagram:

AWVV AXE5-Eagle Create a Linux Boot Image

Non-secure Secure
|

|
|

Trusted Services

G i i e e R i el A

(cla)uEs);Cseg:tcrm (3) Exception
toES : return to EL1

(2) Secure Monitor
+SCR_EL3.NS: 1—> 0

- Save Non-secure register state
+-Restore Secure register state

Figure 3-13 : Secure Monitor

Trusted Firmware, an open-source project that Arm sponsors, provides a reference
implementation of a Secure Monitor. This is referred to as Arm Trusted Firmware
(ATF).

3.8.3 Arm Trusted Firmware (ATF), Boot Loader Stage 3-1(BL31)

The ARM Trusted Firmware implements a subset of the Trusted Board Boot
Requirements (TBBR) Platform Design Document (PDD) for ARM reference
platforms. The TBB sequence starts when the platform is powered on and runs up to
the stage where it hands-off control to firmware running in the normal world in
DRAM. This is the cold boot path.

The ARM Trusted Firmware also implements the Power State Coordination Interface
(PSCI) as a runtime service. PSCl is the interface from normal world software to
firmware implementing power management use-cases (for example, secondary CPU
boot, hotplug and idle). Normal world software can access ARM Trusted Firmware
runtime services via the ARM SMC (Secure Monitor Call) instruction.

The ARM Trusted Firmware implements a framework for configuring and managing
interrupts generated in either security state.

BL31 executes solely in trusted memory. The functionality implemented by BL31is as
follows.

Page |29

Five Years Out arrow.com

http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf

AWVV AXE5-Eagle Create a Linux Boot Image

3.8.3.1 Architectural initialization

Architectural initialization in BL31 allows override of any previous initialization done
by prior boot loader firmware. BL31 creates page tables to address the first 4GB of
physical address space and initializes the MMU accordingly. It initializes a buffer of
frequently used pointers, called per-CPU pointer cache, in memory for faster access.
Currently the per-CPU pointer cache contains only the pointer to crash stack. It then
replaces the existing exception vectors with its own. BL31 exception vectors
implement more elaborate support for handling SMCs since this is the only
mechanism to access the runtime services implemented by BL31 (PSCI for example).
BL31 checks each SMC for validity as specified by the SMC calling convention

PDD before passing control to the required SMC handler routine.

3.8.3.2 Platform initialization

BL31 performs detailed platform initialization, which enables normal world software
to function correctly. It initializes a UART console, which enables access to

the printf family of functions in BL31. It enables the system level implementation of
the generic timer through the memory mapped interface. It initializes the following:

e GICVv2 initialization
e GICv3initialization
e Power management

e Runtime services initialization

N\ROW

AXES5-Eagle Create a Linux Boot Image

4 HPS Customization

As mentioned in section 3.4, a hardware design must be defined for the Agilex™ SoC
FPGA, if you choose to take advantage of the HPS features. This section will review the
HPS customizations that were chosen for the GHRD and used on the AXE5-Eagle board.

The HPS customization is implemented by using the Platform Designer tool. This tool is
launched from Quartus Prime Pro. The snapshots below were captured from the Hard

Processor System Intel Agilex 5 IP component.

The Figure below shows the different sections of the HPS that are customized in the

GHRD.

e HPS and Lightweight HPS to FPGA (LWHZ2F) bridge
e MPU Cluster

10Bank 0

10Bank 1

MPFE NOC

OCRAM
GIC

F2SDRAM TBU

F25DRAM
Bridge

APS

F2HTBU

Pauuol 1|
el
55 15 5

—— PAULORI —5

EEI%EE

UsB3.1

CoreSight

Five Years Out

(DA, STM, ETR)
MPFE Fak i viager | Whasge
v
User Logic LWH2F Ha2F
11
Figure 4-1 : HPS customization
Page | 31 arrow.com

N\ROW

Customization is implemented within the Hard Processor System Intel Agilex 5 FPGA

AXES5-Eagle Create a Linux Boot Image

IP Graphical User Interface seen in the figure below.

The HPS FPGA Interfaces tab is used to customize the bridges. The HPS Clocks,
Resets, Power tab is used to determine which Arm cores are powered on and at which
frequencies they operate. The Pin Mux and Peripherals tab is used to select which
peripherals are to be used and whether they will be routed to the HPS 10 banks or to
FPGA |10 banks.

Hard Processor System Intel Agilex 5 FPGA IP

intel_agilex_5_soc

[HPS FPGA Interfaces | SDRAM | HPS Clocks, Resets, Power |10 Delays |~ Pin Mux and Peripherals |

[~ General

|:| Enakle MPU standby & event signals

Enable GP signals

|| Enable debug APE interface

[] Enable STM HW events

|| Enable SWJ-DP JTAG interface

[] Enable CTlinterface

|| Enable AMBA Trace Bus

™ HPS FPGA Bridges

|~ FPGA to HPS Subordinate

Interface Specification:
Enable/Data Wicth:
Interface Address Width:

[] Enable System MU

Unused

[~ FPGA to SDRAM Subordinate

Enable/Data Wicth:

Interface Address Width:

256-hit

32-bit 4GB

'™ HPS to FPGA Manager

Enable/Data Wicth:

Interface Address VWicth:

32-bit

30-bit 1GB

[~ Lightweight HPS to FPGA

Enable/Data VWidth:

Interface Address Width:

32-bit

28-bit 512 MB

Figure 4-2 : HPS Customization

N\ROW

4.1 HPS FPGA Interfaces

AXE5-Eagle Create a Linux Boot Image

The bridges between the FPGA and the HPS allow

e HPS master access to FPGA peripherals (H2F and LWHZ2F)

e FPGA access to the full HPS address map including coherent access to HPS
SDRAM (F2H)

e FPGA non-coherent access to HPS SDRAM (F2SDRAM)
It is useful to view the HPS system address map from the FPGA and the HPS

perspectives before reviewing the bridge customization.

40-bit Global Address Map for HPS

40-bit Local Address Map for

40-bit Global Address Map for FPGA

(MPU and PSS NoC) MPFE2SDRAM AXI4 Ports in MPFE (F2SDRAM & F2H)
N 0x80_0000_0000 (512 GB) _
OxFF_FFFF_FFFF(1TB) v b (xFF_FFFF_FFFF (1TB)
This plus lower 2
regions give 480 GB SDRAM 480 GB SDRAM 480 GB SDRAM
512GB to SDRAM
0x88_0000_0000 N 0x08_0000_0000 (32 GB) « 0x88_0000_0000
32 GB Reserved (Error Generated) | 0x80_0000_0000 (512 GB} FPGA Space 0x80_0000_0000 (512 GB)
T plus lower 2 BRI 0%00_8000_0000 (2 GE)
reqions give 256 6B 240 GB HPS2FPGA \ 240 GB HPS2FPGA
toaddressrange || Ox44_0000_0000 { 2GBSDRAM (0x44_0000_0000
| 16/GB Reserved (Error Generated) | 0x40_0000_0000 (256 GBJY 0x00_0000_0000 FPGA Space 0x40_0000_0000 {256 GB)
192 GB Reserved (Error Generated) | 0x10_0000_0000 (54 GB)/ /| FPGA Space 0x10_0000_0000 {64 GB)
This plus lower \
region gives 30 GB SDRAM A i 30 GB SDRAM
32GB o SDRAM 0x08_8000_0000 1\ 38-bit Local Address Map for . 0x08_8000_0000
2 GB Reserved (Error Generated) | 0x08_0000_0000 (32GB) | f\ i s FPGAS 0x08_0000_0000 (32 GB)
This pls lower { estrved (s Generated) iy HPS2FPGABridge 5 gpg gog pace 02
region gives 16 GB 15 GB HPS2FPGA ' / 15 GB HPS2FPGA
? adgremange 0x04_4000_0000 S 240 GB HPS2FPGA R 0x04_4000_0000
1GB Reserved (Frror Generated) | (x04_0000_0000 (16 GBJ - 8 J Sttt - FPGA Spatce 0x04_0000_0000 (16 GB)
e S 4 15 GB HPS2FPGA 0x00_4000_0000 __---~~ s
e5€ rror Genera « ~ pace
0:01_0000_0000 (468)/ | /g R 0x00_0000_ 000, . 0x01 00000000 {4 G6)
2GBregion A N
maps to SDRAM 2GB SDRAM i 2GB SDRAM
address 0x0 0x00_8000_0000(2GB) [" 29-bit Local Address Map for (0x00_8000_0000 (2 GB)
1GB HPS2FPGA 000_4000_0000 1 GB) LW HPS2FPGA Bridge 1GBHPS2FPGA 0K00_4000_0000 1 68)
0x00_2000_0000
512 MB LW HPS2FPGA 0x00_2000_0000 512 MB LW HPS2FPGA 030000000000 SIZMBLWHPS2FPGA | oo 200 0000
47 MB Reserved (Error Generated) FPGA Space
0x00_1010_0000 0x00_1D10_0000
1MB GIC Regs 0x00_1000_0000 FPGA Space 0x00_1D00_0000
16 MB CCU {Ncore) Regs 0x00_1C00_0000 NOTE: F2H (1T8) bridge is 10 coh tort from fabri 16 MB CCU (Ncore) Regs (0x00_1C00_0000
64 MB MPFE Regs 0x00_1800_0000 : rdge is IU coherent port from fabric 64 MB MPFE Regs 0X00_1800_0000
- to the HPS. Can access OCRAM, SDRAM, and peripherals, -
128 MB PSS Periphs except the GIC. 128 MB PSS Periphs
0x00_1000_0000 0x00_1000_0000
| 255.5 MB Reserved (Ermor Generated)| 0x00_0008_0000 NOTE: F2SDRAM (1 TB) bridge is non-coherent port from GRSy (x00_0008_D000_
512 KB OCRAM 0x00_0000_0000 fabric to the SDRAM. S12KB 0CRAM {5x00_0000_0000

Figure 4-3 : Total System Address Map

The address map on the left represents the view as seen by HPS masters. The map on
the right represents the view as seen by FPGA masters. The map in the middle shows
the respective local address maps of the LWH2F, H2F and MPFE2SDRAM bridges.

Five Years Out

Page|33

arrow.com

AXE5-Eagle Create a Linux Boot Image

N\ROW

4.1.1 FPGA to SDRAM Bridge (F2SDRAM)

The 40 Bit Global address map for the FPGA provides three separate address map
locations for the SDRAM. The first is located at 0xO0 8000 0000 and has an address
span of 2GB. The next is located at 0x08 8000 0000 and has an address span of
30GB. The last is located at 0x88 8000 0000 and has an address span of 480GB.
Used together these three regions provide for a total of 512 GB SDRAM. The Eagle
board is populated with 1GB of LPDDR4 SDRAM connected to the HPS EMIF
controller. This is mapped in the 40 Bit Global address map in the 2GB to 4GB space.

The Interface Address Width can be set anywhere from 20 to 38 bits. The Data Width
can be 32, 64 or 128 bits wide. To provide access to the entire range of the LPDDR4
from the fabric, the Interface Address Width is set to 32 bits. This provides the
required map range of O to 4GB. The data width is set to 256 bits for maximum

bandwidth.

[~ FPGA to SDRAM Subordinate

EnableData Width: 256-hit -

Interface Address Width: |32-bit 4GB -

40-kit 1TB
359-bit 512GE
38-hit 256GE
37-bit 128GE
36-bit 64GE
35-bit 32GB
34-bit 16GE
33-hit BGE

31-bit 2GB
30-bit 1GE
28-bit 512 MB
28-bit 256 MB
27-hbit 128 MB
26-bit 54 MB
23-bit 32 MB
24-bit 16 MB
23-hit & MB
22-hit 4 MB
21-hbit 2 MB
20-kit 1 MB

Figure 4-4 : F2SDRAM Customization

[~ FPGA to SDRAM Subordinate

Enable/Data Width: 256-hit
~ |Unused
Interface Address Width: G it
128-hit

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

4.1.2 Lightweight HPS to FPGA Bridge (LWH2F)

This bridge’s base address is mapped at one fixed location in the 40 Bit Global
address map for the HPS (Ox00 2000 0000). It has a maximum address span of 29
bits (512 MB). It has a fixed data width of 32 bits. The GHRD uses the entire 29-bit
span.

The bridge is intended to be used as a low latency, control plane interface from the
HPS to the FPGA.

|' Lightweight HPS to FPGA Manager

Enable/Data Width: 32-bit H

Interface Address Wicth, |28-bit 512 MB ‘ -

28-hit 256 MB
27-bit 128 MB
26-hit 64 MB
25-hbit 32 MB
24-bit 16 MB
23-bit & MB
22-bit 4 MB
21-bit 2 MB
20-bit 1 MB

Figure 4-5 : LWHPS2FPGA Customization

Five Years Out Page I 35 arrow.com

AWVV AXE5-Eagle Create a Linux Boot Image

4.1.3 HPS to FPGA Bridge (H2F)

The 40 Bit Global address map for the HPS provides three separate address map
locations for the H2F bridge. The first is located at 0xO0 4000 0000 and has an
address span of 1GB. The next is located at 0x04 4000 0000 and has an address
span of 15GB. The last is located at 0x44 4000 0000 and has an address span of
240GB. The local address map for this bridge presents a contiguous 38 bit address
span (256 GB).

The Interface Address Width can be set anywhere from 20 to 38 bits. The Data Width
can be 32, 64 or 128 bits wide. The GHRD currently has selected a 1GB address span
and 32 data width. The GHRD has the H2F bridge connected to the FPGA EMIF
subsystem. The Eagle board is populated with 1GB of LPDDR4 SDRAM connected to
the FPGA EMIF controller.

[~ HPS to FPGA Manager [~ HPS to FPGA Manager

Enable/Data V¥icth: e = Enable/Data Wickh: 32-bit

Interface Address VWidth: |30-bit 1GB | - Unused

38-bit 256GE
37-hit 128GEB
36-hit 64GE
35-hit 32GB
34-bit 16GE
33-hit 8GB
32-hit 4GB
31-hit 2GB

&4-hit
128-hit

29-bit 512 MB
28-hit 256 MB
27-hit 128 MB
26-bit 64 MB
25-bit 32 MB
24-bit 16 MB
23-hit 8 MB
22-bit 4 MB
21-bit 2 MB
20-bit 1 MB

Figure 4-6 : HPS2FPGA Customization

4.1.4 FPGA to HPS Bridge (F2H)

F2H bridge provides a way for initiators (IPs, accelerators) in the fabric to access HPS
peripherals, which makes the peripherals extensions of the HPS system. The
accelerator coordinates with the HPS MPU via mailboxes or semaphores in HPS
memory, or via various interrupts and GPIOs exposed by the HPS to the fabric.
Typical use cases involve the HPS MPU preparing space in memory for fabric
accelerators to use, then allowing the accelerator to move and process large
amounts of data in HPS memory. The HPS MPU can perform control functions such
as inspecting headers in large streams of data to determine the next action and
coordinating data movement among multiple fabric accelerators. This bridge places

I.\N.\EVV AXES5-Eagle Create a Linux Boot Image

fabric initiators in the same hierarchy as the MPU in the HPS subsystem. F2H bridge
supports IO cache coherency with the HPS MPU caches; fabric transactions can
snoop the MPU caches, but the MPU caches cannot snoop activity in the fabric. In
addition, using ACE-Llite, the F2H bridge goes through the system memory
management unit (SMMU). This allows fabric initiators to use the same virtual
memory view as the MPU.

Five Years Out Page I 37 arrow.com

I.\N.\E\IV AXES5-Eagle Create a Linux Boot Image

4.2 HPS Clocks, Resets, Power

This section allows the designer the ability to customize the input clock frequency
for the HPS, the Phase Lock Loop output (PLL) frequencies and which Arm cores are
powered on.

4.2.1 Input Clocks
The Eagle board connects a 25 MHz external oscillator to the HPS EOSC pin.

Input Clocks |/ PLL Clocks |/ Power & Resets |

[* External Clocks

EQSC Clock Fregquency: 250 MHz

Figure 4-7 : Input Clocks

4.2.2 PLL Clocks

The individual frequencies that each Arm core operates at can be specified. Cores O
and 1 share the same frequency.

Input Clocks PLL Clocks |/ Power & Resets |

[~ MPU Clocks
Clocks Freguencies (Mhz) Sources

MPLI S00.00 MainC2

MPL CCL 250.0 MPL

MPL Periph 1250 MPL

CoreQ|Corel 875.00 PeriphC0

Core2 B00.00 IainCo

Cored B00.00 IMainCo

Figure 4-8 : PLL Clocks

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

4.2.3 Power & Resets

The user can configure which Arm cores are powered on. Cores O and 1 share the
same selection.

|’/Input Clocks |/ PLL Clocks |/ Power & Resets

[Power Configurations

AS55 Core-0-1 Power On

ATE Core2 Power On

ATE Core3 Power On
Figure 4-9 : Power Configurations

4.3 Pin Mux and Peripherals

The Auto-Place IP tab contains a list of HPS peripherals that can be enabled and
either routed to the HPS I/O or to the FPGA.

Auto-Place IP feature assists you to easily select the desired peripherals and have
the tool automatically place those peripherals either among the 48 dedicated HPS
/O or on the FPGA if available.

You can enable the following types of peripherals:
e SD/MMC Controller
e USB 2.0 OTG Controller (USBOQ)
e USB 3.1Gen1 Controller (USB1)
e Ethernet Media Access Controller
e SPIMaster
e SPISlave
e UART Controller
e |12C Controller
e I3C Controller
e NAND Flash Controller
e CoreSight Debug and Trace
e GPIO

The HPS has 48 dedicated IOs; therefore, not all peripherals can fit in the HPS 1/0.

Five Years Out Page I 39 arrow.com

I.\N.\E\IV AXES5-Eagle Create a Linux Boot Image

4.3.1 Advanced IP Placement

The Advanced IP Placement tab allows you to be more specific about the placement
of each peripheral pin in the HPS dedicated I/O quadrant space. Each location has a

pulldown selection menu where you can select which peripheral 1/0 to be routed to

the pin location. Each pulldown menu corresponds to the inputs available to the Pin

Mux at that location.

™ Pin Mux GUI

Advanced

l/ Advanced IP Placement r Advanced FFGA Placement

/0 Selections

Lle] IP Selection lle] IP Selection lls] [P Selection lls] IP Selection

wesions [T [v] Wesloats [EEoR [v] rsions [owecax v wesiosis [ucmie [v]
wesions [UAom] Wsloats [ssioRm v e ions Hps08_t6 [EmAczRET v
HPsons [amA [v] Weslor [Eoam [v] rslons [@oror v weolosit [mcne [v]
wpsions [EESse o] Wsloars [mmn [v] wpsions [owcoama <] Hesiosie [wAcapor <]
s 07 [Ewconm [x] Hps08.1s
s 085 [omem —[v] Hesosa
s 06 [mozio0 =] resion.a
Hpsonto [chocics] Wpsloazo [sioRtes [v] wesomto [oaie [v] Hesiosz [wAczbos o]
P oA 11 [@outs [v] Wslonzs [Eetoaas [v] rpsonti [oron [v] wesioszs [[v]
Hpson 12 s osc i [v] Wsloazs [eroa [v] resiomi: [t v wesiosx [wcimos ||

Figure 4-10 : AXE5-Eagle board Advanced IP Placement

N\ROW

AXE5-Eagle Create a Linux Boot Image

Figure 4-11 below shows the corresponding wiring, based on the Advanced IP
Placement, on the AXE5-Eagle board, for the HPS 10 bank.

HPS

Q

UlG

— ""SIP‘E%I LLK IHPS_IOA_1, GPIOO_IO0, SPIMO_SS1_N, SPISO_CLK, UARTO_CTS_N, NAND_ADQO, SDMMC_DATAQD, USBO_CLK, EMACO_PPS0, TRACE_D10 S —
T HPS_I0A_2, GPIO0_IO1, SPIM1_SS1_N. SPIS0_MOSI, UARTD_RTS_N, NAND_ADQ1, SDMMC_DATA1, USBO_STP, EMACO_PPSTRIGO, TRACE_D3
{HPS_IOA_3, GPIO0_I02, SPIS0_SS0_N, UARTG_TX, I2C1_SDA, NAND_WE_N, SDMMC_CLK, USBO_DIR, EMAC1_PPS1, TRACE_D3
——ARTORX F1HPSI0A_4, GPIOD_IO3, SPISO_MISO, UARTO_RX, I2G1_SCL, NAND_RE_N, USBO_DATAD, EMAC1_PPSTRIG1, TRACE D7
- HPS_IOA_5, GPIO0_I04, SPIMO_CLK, UART1_CTS_N, I2C0_SDA, NAND_WP_N, SOMMC_WRITE_PROTECT, USBO_DATA1, EMAG2_PPS2, TRACE_DE
e AN aT] HPS_IOA_6, GPIOO_I05, SPIMO_MOSI, UART1_RTS_N, 12C0_SCL, NAND_ADQ2, SDMMC_DATAZ, USBO_NXT, EMAC2_PPSTRIG2, TRACE D5
e R IHPS_IOA_7. GPIOO_IO6, SPIMO_MISO, MDIO2_MDUART1_TX, 12C_EMAC2_SDA, NAND_ADQ3, SODMMC_DATA3, USBO_DATA2, TRACE_DA
= HPS_IOA_8, GPIO0_IO7, SPIMO_SSO_N, MDIO2_MDC, UART1_RX, 1I2C_EMAC2_SCL, NAND_CLE, SDMMC_CMD, USBG_DATA3, TRACE_D15
= - HPSIOA_9, GPIOU_IO8, SPIMT_CLK, SPIS1_CLK, MDIO1_MDIO, [2C_EMAC1_SDA, NAND_ADQ4, SDMMC_DATA4, USBO_DATAA4, I3C1_SDA, TRACE_D14
ST HPS_I0A_10, GPIOD_I09, SPIMT_MOSI, SPIS1_MOSI, MDIO1_MDC, i2C_EMAC1_SCL, NAND_ADQS5. SDMMC_DATAS, USBO_DATAS, 13C1_SCL, TRACE_D13
- IHPS_IOA_11. GPIOD_I010, SPIMT_MISO, SPIST_SS0_N, MDIGO_MDIO, 12C_EMACD_SDA. NAND_ADQ6, SDMMC_DATAG, USBO_DATAG, I3C0_SDA, TRACE_D12
HEs DS C1K1 HPS_IOA_12, GPIOO_IO11, SPIM1_SS0_N, SPIST_MISO, MDIOO_MDC, 12C_EMACO_SCL, NAND_ADQ7, SDMMC_DATA7, USBO_DATA7, 13C0_SCL, TRAGE_D11
T - HPS_IOA_13, GPIO0_IO12, NAND_ALE, SDMMC_PU_PD_DATAZ, USB1_CLK, EMACO_TX_CLK, TRACE. D10
T HPS_I0A_14, GPIOD_IO13, NAND_RB_N, SDMMC_PWR_ENA, USB1_STP, EMACO_TX_GTL, TRACE_D3
AR LIHPS_IOA_15, GPIO0_IO14. NAND_CE_N, USB1_DIR, EMACO_RX_CLK, TRACE_D§
3 HPS_I0A_16, GPIOD_IO15, NAND_DQS, SDMMC_DATA_STROBE, USB1_DATAQ, EMACO_RX_CTL, TRACE_D7
el HPS_IOA_17, GPIOO_IO16, 13C1_SDA, NAND_ADQ8, USB1_DATA1, EMACO_TXDO, TRACE_DB
use NI HPS_IOA_18, GPIOD_IO17, 13C1_SCL, NAND_ADQS, USB1_NXT, EMACO_TXD1, TRACE_D5
TS -IHPS_IOA_19. GPIOO_IO18, I3C0_SDA. NAND_ADQ10, USB1_DATA2, EMACO_RXDO, TRACE_D4
Ten AR HPS_I0A_20, GPIOD_I019, SPIM1_SS1_N, I3C0_SCL, NAND_ADQ11, USB1_DATA3, EMACO_RXD1, TRAGE_CLK
4 HPS_IOA_21. GPIOD_I020, SPIM1_CLK, SPISO_CLK, UARTO_CTS_N, I2C1_SDA. NAND_ADQ12, USB1_DATA4, EMACD_TXD2, TRACE_DD
USB_DATAS HPS_I0A_22. GPIOD_I021, SPIM1_MOSI, SPIS0_MOSI, UARTO_RTS_N, 12C1_SCL, NAND_ADQ13, USB1_DATAS, EMACO_TXD3, TRACE_D1
USE DATAS HPS_I0A_23. GPIOD_I022, SPIM1_MISO, SPISO_SS0_N, UARTO_TX, 12C0_SDA, NAND_ADQ14, USB1_DATA6, EMACD_RXD2, TRACE_D2
USB DATAZ HPS_I0A 24, GPIOD 1023, SPIM1_SS0_N, SPISO_MISO, UARTO_RX, 12C0_SCL, NAND_ADQ15, USB1_DATA7, EMACO_RXD3, TRACE D3
ASEDO6SBB32AEASRO
UIH
%
= S E g HPS_IOB_1, GPIO1_I00, SPIM1_CLK, UARTO_CTS_N, EMACO_PPS0, NAND_ADQO, SDMMC_DATAD, EMAC1_TX_CLK, TRACE_D10 LS Bank 108
= =D DAL L155HPSTIOB_2 GPIO1_IO1, SPIM1_MOSI, UARTO_RTS N, EMACD_PPSTRIGD, NAND_ADQ1. SDMMC_DATA1, EMAC1_TX_CTL, TRAGE_DS an
i 1o F{HPS_I0B_3, GPIO1_I02, SPIM1_MISO, UARTO_TX, [2C0_SDA, NAND_WE_N, SDMMC_CLK, EMACT_RX_CLK, TRACE_D8
TR Rt S 1-F1HPS_IOB_4, GPIO1_I03, SPIM1_SS0_N, UARTO_RX, 12C0_SCL, NAND_RE_N, EMAC1_RX_CTL, TRACE D7
e AaTot1HPS_IOB_5, GPIO1_IO4, SPIM1_SS1_N. SPIS1_CLK, UART1_CTS_N, EMAC2 PPS2, NAND_WP_N, SDMMC_WRITE_PROTECT, I3C1_SDA, EMAC1_TXDO, TRACE_D6
ol e a}-HPS I0B_6, GRIO1_I05, SPIS1 _MOST, UART1 RTS N, EMAC2_PPSTRIG2, NAND_ADQ2, SOMNIC_DATAZ, I3C1_SCL, EMACT_TXD1, TRACE_D5
=0 DAL AETFTHPS_I0B_7, GPIO1_I06, SPIST_SSO_N, UART1_TX, 12G1_SDA, NAND_ADQ3, SDMMC_DATA3, 13C0_SDA, EMAC1_RXDO, TRAGE_D4
DM S3P1HPS_IOB_8, GPIO1_I07, SPIST_MISO, UART1_RX, 12G1_SCL. NAND_CLE, SDMMC_CMD, I3C0_SCL, EMAG1_RXD1, TRACE_D15
e ASF{HPS_I0B_9, GPIO1_I08, JTAG_TCK, SPISO_CLK, MDIOZ_MDIO, 12C_EMAC2_SDA, NAND_ADQA, SDMMC_DATA4, EMAC1_TXD2, TRACE_Di4
R L5F1HPS_IOB_10, GPIOT_I09, JTAG_TMS, SPISO_MOSI, MDIO2_MDC, 13C_EMAC2_SCL, NAND_ADQS, SDMMC_DATAS, EMACT_TXD3, TRACE D13
SRR 1124 HPS_I0B_11, GPIO1_1010, JTAG_TDO, SPIS_SSO_N, MDIGO_MDIO, PC_EMACO_SDA, NAND_ADGE, SDMMC_DATAG, EMAC1_RXD2, TRACE D12
= Trs4HPS IOB_12, GPIOT_I011, JTAG_TDI, SPISO_MISO, MDIOD_MDC, 12C_EMACO_SCL, NAND_ADQ7, SOMMC_DATA7, EMAC1_RXD3, TRACE D11
EL T K157 1HPS I0B_13, GPIO! T1012, 12C1_SDA, NAND_ALE, SDMMC_PU_PD_DATA2, EMAC2_TX_CLK, TRACE_D10
e TS FTHPS_I0B_14, GPIO1 1013, 12C1_SGL, NAND_RB_N, SDMMC_PWR_ENA, EMAC2 TX_CTL, TRACE_DJ
ETH ek AT FtHPS_IOB_15, GPIO1_IO14, UART1_TX, NAND_CE N, 13C1_SDA, EMAC2 RX_CLK, TRAGE D6
T = gHPS I0B_16, GPIO1_IO15, UART1_RX, NAND_DQS, SDMMC_DATA_STROBE, I3C1_SCL, EMAC2_RX_CTL, TRACE_D7
e S 5FHPS_I0B_17. GPIOT_I016, UART1_CTS_N, NAND_ADGS, I5C0_SDA, EMAC2_TXDO, TRACE_D6
Y55HPSI0B_18, GPIOT_I017, SPIMO_SS1_N. UARTT_RTS_N, NAND_ADQS, I3C0_SCL. EMACZ_TXD1, TRACE_D5
— L 25 15F7HPS_I0B_19, GPIO1_IO18, SPIMO_MISO, MDIO1_RIDIO, 12C_EMAC1_SDA, NAND_ADQ10, EMAC2 | 'RXD0, TRACE_D4
— ?;(5; 25 ;HPS 10B_20, GPIO1_I019, SPIMO_SS0_N, MDIOT_MDC, 12C_EMAC1T_SCL, NAND_ADQ11, EMAC2_RXD1, TRACE_CLK
o T15HHPSTIOB 21, GPIO171020, SPIMO_CLK; SPIS1_CLK, 12C_EMAC2_SDA, NAND_ADQ12, EMAC2 TXD2, TRACE DO
s Fi5F{HPS 10B 22, GPIO1_1021, SPIMO_MOS|, SPIST_MOSI, [2C_EMAC2_SCL, NAND_ADQ13, EMAC2_TXD3, TRACE D1
s E13HHPSI0B_23 GPIO1_1022] SPIMO_MISO; SPIS1_SS0_N, MDIOD_MDIO, I3C_EMACO_SDA, NAND_ADQ14, EMACZ_RXD2, TRACE D2
£ HPS_I0B_24, GPIO1_I023, SPIMO_SS0_N, SPIST_MISO, MDIOO_MDC, 12C_EMAC0_SCL, NAND_ADQ15, EMAG2_RXD3, TRACE_D3

ASFNNASRRIIAFACRN

Figure 4-11 : AXE5-Eagle board schematic wiring for Advanced IP Placement

The Advanced FPGA Placement tab allows you to route specific peripherals to the

FPGA.

Figure 5-12 below shows the specific peripherals that are routed to FPGA 1/0 banks.
They are:

EMACO

2C1
SPIMO

Five Years Out

Page | 41

arrow.com

I.\N.\E\IV AXES5-Eagle Create a Linux Boot Image

4.3.2 Advanced FPGA Placement

[Pin Mux GUI

[Auto-Place IP [Advanced

[Advanced P Placemert |~ Advanced FPGA Placement |
IP Block Route to FPGA? Options
EMACO [ves [~] EMAC Olrterface; [OMI [~ | EMAC OPHY:
Emac EMACT terface: [GMIl[w| EmacpHv: [None [
EMAC 2 EMAC 2iterface: [OMI| v | EMACZPHY. [None [+]
e
Apply Selections
UART 0
BT
e
BT
o raceanwn 5]
SPIM 0
SPIN 1
2 EMAC D Mo [~]
2C EMAC 1 no [=]
12C EMAC 2 Mo [~]

Figure 4-12 : AXE5-Eagle board Advanced FPGA Placement

The HPS customization information is compiled into the configuration bitstream and
is later used by the FSBL to configure the HPS at boot time. It is commonly referred
to as the HPS handoff data.

AWVV AXE5-Eagle Create a Linux Boot Image

5 Creating a Bootable Image

In section three we explored the hardware, firmware and software necessary to boot an
Agilex 5 SoC FPGA from Power-on to the Linux prompt. You will now learn how to build
the required software. You will also learn how to package it on appropriate boot media.

The flow for creating a Golden System Reference Design is:

Create a Hardware project in Quartus (GHRD)

Customize the HPS in Platform Designer

Compile the GHRD in Quartus to generate an FPGA configuration bitstream.
Compile the Arm Trusted Firmware (BL31)

Compile U-boot. This creates the FSBL and the SSBL.

Compile a U-boot boot script.

Compile the Linux kernel

Use the Yocto project to create a Linux root file system (rootfs)

Package BL31, U-boot (SSBL), boot script, and the Linux kernel in the FAT
partition of an SD card.

Package the rootfs in the Linux partition of the SD card.

Create a custom FPGA configuration image, using the Quartus Programming File
Generator. This image includes the SDM firmware, the FSBL, HPS handoff data
and the FPGA configuration data.

Write the custom FPGA configuration image into QSPI flash using the Quartus
Programmer.

This lab will focus on compiling the software components required to boot Linux. You
will also boot the Linux image on an AXE5-Eagle board

The GHRD is provided as a completed, pre-built, project.

The Yocto project can take up to a few hours to build. It is provided as a
completed, pre-built, project.

Five Years Out

Page| 43

arrow.com

,\M\I AXES5-Eagle Create a Linux Boot Image

The GSRD flow is shown in Figure 5-1 below.

ASEDOB5BB32AESSRO
GHRD Compile flash_loader Create RBF & JIC
- QSPI Flash
[[:lrlr)or‘: o —> Quirtus axeS_eagle_tDp.so§ Prog?aﬁﬁlilrf:g File EzfsﬁE;MI:tIi/o
- B n ur on
8 P Platform Designer I Generator
u-boot
A u-boot-spl-dtb.hex (FSBL) SD Card
rrow
. -boot.ith
gitHub repo. Lot bf FPGA Core & 1/0
Configuration
bl31.bin
ATF bi31
Arrow
gitHub repo. u-boot SSBL
+
ARM Trusted Firmware i
Linux Kernel
A Image (kernel)
gi‘lHurlr)o::po socfpga agilex5 axe5 eagle.dtb (Device Tree) Device Tree
FAT Partition
Yocto

Altera rootfs) ’
gitHub repo. Linux File System

Linux Partition

Figure 5-1 : The GSRD Build Flow

Follow the instructions in the next few sections of the Lab to create a bootable Linux
image for the AXE5-Eagle board

AXES5-Eagle Create a Linux Boot Image

N\ROW

5.1 Code repositories

Arrow hosts several repositories, required for this build, on Github. They are a mirror
of the Altera repositories and are continually maintained to include the latest
updates. The repositories are listed below.

e Arm Trusted Firmware — arm-trusted-firmware

e U-boot-u-boot-socfpga
e Linux-Llinux socfpga

Additional repositories are hosted to support the GHRD and other reference designs
e Golden Hardware Reference Design - ghrd-socfpga

e Reference Designs — refdes-agilex5

Five Years Out Page I 45 arrow.com

https://github.com/ArrowElectronics/arm-trusted-firmware
https://github.com/ArrowElectronics/u-boot-socfpga/tree/socfpga_v2023.10
https://github.com/ArrowElectronics/linux-socfpga/tree/socfpga-6.1.68-lts
https://github.com/ArrowElectronics/ghrd-socfpga
https://github.com/ArrowElectronics/refdes-agilex5/blob/main/scripts/fit_kernel_agilex5.its

,\.IWVV AXE5-Eagle Create a Linux Boot Image

5.2 Launch the Oracle VirtualBox Linux Virtual Machine

5.2.1 Launch the VirtualBox based Ubuntu 22.04 LTS Virtual Machine.
Select the Agilex 5 Workshop and then press the Start button

\5 Oracle VirtualBox Manager

File Machine Activity Help

4 ad B %Y

Export Activity Overview Preferences Settings Discald Start

@ Agilex 5 Workshop o=
, () powered Off - |
CPU Load |

Guest Load: --
NINARA | An Al |

5.2.2 Copy and paste guide

A copy and paste guide is provided for convenience. These commands can be pasted
into the Linux shell as directed in the Lab guide.

The following shortcuts can be used
Copy Ctrl+C
Paste Shift + Ctrl + V

AWVV AXE5-Eagle Create a Linux Boot Image

5.2.3 Host password

The password for the VirtualBox VM is root. This will be required by the super user
command sudo.

5.2.4 VirtualBox Menu Bar

A menu bar is visible at the top of the VirtualBox screen. This will be referred to later
in the lab document for access to specific functions.

Agilex 5 Workshop [Running] - Oracle VirtualBox
File Machine View Input Devices Help

5.3 Setup the build environment

Follow the instructions listed below to setup the build environment. First, open a
shell. The instructions can be copied and pasted from the copy and paste guide, a line
at a time, into the shell and executed. The instructions do the following:

e Definea TOP_FOLDER

$ cd agilex_5
$ export TOP_FOLDER="pwd'

5.4 Arm Trusted Firmware (BL31)

The Arm Trusted Firmware code has not been modified for the AXE5-Eagle board.
The code is a mirror image of the altera repository and can be compiled as is.

Follow the instructions listed below to clone the source code and complete the
compilation. The instructions can be copied and pasted from the copy and paste
guide, a line at a time, into the shell and executed. The instructions do the following:

e Clone the Arrow Arm Trusted Firmware repository

e Compile

Five Years Out Page I 47 arrow.com

AXES5-Eagle Create a Linux Boot Image

N\ROW

$ git clone -b QPDS25.1_REL_GSRD_PR https://github.com/ArrowElectronics/arm-trusted-
firmware arm-trusted-firmware

$ cd arm-trusted-firmware
$ make -j 48 PLAT=agilex5 bl31

The following file is created:

e $TOP_FOLDER/arm-trusted-firmware/build/agilex5/release/bl31.bin

The build flow for ARM Trusted Firmware is represented in the figure below.

Arm Trusted Firmware

W bl31.bin

Arrow (
atf source code o make J >

gitHub repo. 'L

Figure 5-2 : Arm Trusted Firmware Build flow

5.5 U-boot
The build for the AXE5-Eagle board utilizes two distinct customization sources.
e U-boot build configuration (defconfig)

e devicetree

5.5.1 defconfig

U-boot utilizes the same Kconfig, Kbuild build configuration system as Linux. The
build configuration is specified in a defconfig file. This determines which features and
hardware support code are built into the U-boot executable.

The defconfig for the AXE5-Eagle board. Is comprised of a combination of a standard
agilex 5 defconfig and a custom config fragment.

e socfpga agilex5 defconfig

e config-fragment-eagle

5.5.2 Devicetree

The devicetrees are used to define dynamic boot selections at boot time. They define
which drivers to load and which peripherals to enable.

https://github.com/ArrowElectronics/u-boot-socfpga/blob/socfpga_v2025.01/configs/socfpga_agilex5_defconfig
https://github.com/ArrowElectronics/u-boot-socfpga/blob/socfpga_v2025.01/config-fragment-eagle

I.\N.\E\IV AXES5-Eagle Create a Linux Boot Image

Devicetrees for U-boot have been customized for the AXE5-Eagle board.

e socfpga agilex5 axe5 eagle-u-boot.dtsi

e socfpga agilex5 axeb5 eagle.dts

The same set of Devicetree source files are used for FSBL and SSBL. The U-Boot
devicetree is filtered by the fdtgrep tools during the build process to generate a
much smaller device tree used in the FSBL.

5.5.3 Compile U-boot

Follow the instructions listed below to clone the source code and complete the
compilation. The instructions can be copied and pasted from the copy and paste
guide, a line at a time, into the shell and executed. The instructions do the following:

e Clone the source.

e Clean the code base of any remnants using the mrproper option. Fun fact: The
name mrproper is derived from a reference to the cleaning product Mr. Clean,
which translates into Mr. Proper in other languages.

e Use the AXE5-Eagle board build configuration,
socfpga_agilex5_axe5_eagle_defconfig

e Create a link to the ATF bl31 binary file. This will be packaged into the u-
boot.itb image.

$ cd $TOP_FOLDER
$ rm -rf u-boot-socfpga

$ git clone -b QPDS25.1_REL_GSRD_PR https://github.com/ArrowElectronics/u-boot-socfpga
u-boot-socfpga

$ cd u-boot-socfpga

e Only boot from SD, do not try QSPI and NAND

$ sed -i 's/u-boot,spl-boot-order.*/u-boot\,spl-boot-order = \&mmc;/g'
arch/arm/dts/socfpga_agilex5 axe5 eagle-u-boot.dtsi

e Disable NAND in the device tree

$ sed -i '/&nand {/!b;n;c\\tstatus = "disabled";' arch/arm/dts/socfpga_agilex5 axe5 eagle-u-
boot.dtsi

e Linkto ATF

$ In -s ../arm-trusted-firmware/build/agilex5/release/bl31.bin

Five Years Out Page I 49 arrow.com

https://github.com/ArrowElectronics/u-boot-socfpga/blob/socfpga_v2025.01/arch/arm/dts/socfpga_agilex5_axe5_eagle-u-boot.dtsi
https://github.com/ArrowElectronics/u-boot-socfpga/blob/socfpga_v2025.01/arch/arm/dts/socfpga_agilex5_axe5_eagle-u-boot.dtsi
https://github.com/ArrowElectronics/u-boot-socfpga/blob/socfpga_v2025.01/arch/arm/dts/socfpga_agilex5_axe5_eagle.dts
https://github.com/ArrowElectronics/u-boot-socfpga/blob/socfpga_v2025.01/arch/arm/dts/socfpga_agilex5_axe5_eagle.dts
https://en.wikipedia.org/wiki/Mr._Clean#:~:text=Clean%20(or%20Mr.,a%20melamine%20foam%20abrasive%20sponge.&text=%22There's%20no%20clean%20like%20Mr,Clean.%22&text=The%20all%2Dpurpose%20cleaner%20was,character%20actor%20House%20Peters%20Jr.

,\M\I AXES5-Eagle Create a Linux Boot Image

e Clean the build

$ make clean && make mrproper

e Create the defconfig. Combine with the custom config fragment

$ make socfpga_agilex5_ defconfig
$./scripts/kconfig/merge_config.sh -O . -m .config config-fragment-eagle

e Compile to generate the devicetree, FSBL & SSBL

e Package the ATF bl31 binary, devicetree and SSBL into u-boot.ith
$ make -j 64

The following files are created:
e $TOP_FOLDER/u-boot-socfpga/u-boot.itb (SSBL)
e $TOP_FOLDER/u-boot-socfpga/spl/u-boot-spl-dtb.hex (FSBL)

Detailed build flow for U-boot is represented in the figure below.

SD Card
u-boot
u-boot-spl source code W) u-boot-spl-dtb.hex (FSBLY. ATF bl31
Arrow socipga agilex5 defconfig + fragment k - »
itHub repo socfpga_agilexs axeb eagle-u-boot.dtsi o make u-boot.ith
g pe: \ u-boot SSBL
+

device tree

FAT Partition

Figure 5-4 : U-boot (SSBL) Build flow

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

5.6 Linux

The build for the AXE5-Eagle board utilizes two distinct customization sources.
e Linux kernel build configuration (defconfig)

e Devicetree source (dts)

5.6.1 defconfig

The Linux kernel utilizes the Kconfig, Kbuild build configuration system. The build
configuration is specified in a defconfig file. This determines which features and
hardware support code are built into the Linux kernel.

The defconfig for the AXE5-Eagle board. Is comprised of a combination of a standard
linux arch64 defconfig and a custom config fragment.

e defconfig
e config-fragment-eagle

5.6.2 Devicetree

The devicetree is used to define dynamic boot selections at boot time. They define
which drivers to load and which peripherals to enable. The devicetree also defines
the location of the peripherals in the memory map and their associated drivers.

The Devicetree listed below has been customized for the AXE5-Eagle board.

e socfpga agilex5 axe5 eagle.dts

5.6.3 Compile Linux

Follow the instructions listed below to clone the source code and complete the
compilation. This will take approximately 25 minutes to download and compile. The
instructions can be copied and pasted from the copy and paste guide, a line at a time,
into the shell and executed. The instructions do the following:

Five Years Out Page I 51 arrow.com

https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.12.11-lts/arch/arm64/configs/defconfig
https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.12.11-lts/config-fragment-eagle
https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.1.68-lts/arch/arm64/boot/dts/arrow/socfpga_agilex5_axe5_eagle.dts

,\m\l AXES5-Eagle Create a Linux Boot Image

e Clone the source.

e Create the AXE5-Eagle board build configuration,
socfpga_agilex5_axe5_eagle_defconfig to compile the Linux kernel

e Compile the Linux kernel and the devicetree

e Setup the build environment and clone the linux source code

$ cd $TOP_FOLDER
$ rm -rf linux-socfpga

$ git clone -b QPDS25.1_REL_GSRD_PR https://github.com/ArrowElectronics/linux-socfpga
linux-socfpga

$ cd linux-socfpga

e Add arrow dts folder as Makefile option
$ sed -i '$ a subdir-y += arrow' arch/arm64/boot/dts/Makefile

e Merge configuration fragment with the default defconfig

$ make defconfig
$./scripts/kconfig/merge_config.sh -O ./ ./.config ./config-fragment-eagle

e Compile the Linux kernel and the devicetree

$ make -j 64 Image && make arrow/socfpga_agilex5 axe5 eagle.dtb

The following files are created:
e $TOP_FOLDER/linux-socfpga/arch/arm64/boot/Image

e $TOP_FOLDER/linux-
socfpga/arch/arm64/boot/dts/arrow/socfpga_agilex5_axe5_eagle.dtb

Li SD Card
Inux
AW Image > kernel
gitHub repo. “socfpga agilex5 axe5 eagle.dts > make socfpga agilex5 axe5 eagle.dtb device tree
-

FAT Partition

Figure 5-5 : Linux Build flow

AXE5-Eagle Create a Linux Boot Image

N\ROW

5.7 Create a Linux Root File System (rootfs) with Yocto

The Yocto build requirements and flow are described on the Rocketboards site on
the “Building Bootloader for Agilex 5” page. This can take a number of hours to
complete.

The compiled rootfs image is provided for this lab..
The file is located at :

e $TOP_FOLDER/yocto/build/tmp/deploy/images/agilex5/core-image-
minimal-agilex5.rootfs.tar.gz

Five Years Out Page I 53 arrow.com

https://www.rocketboards.org/foswiki/Documentation/BuildingBootloaderForAgilex5#Building_Yocto_Rootfs

AXE5-Eagle Create a Linux Boot Image

N\ROW

5.8 Create the FPGA Configuration Bitstream Images

The HPS boot first mode requires that two configuration files are generated. The first
contains the HPS EMIF 1/O configuration information. The SDM uses this to setup the
HPS memory controller I/O before the FSBL starts running. This file is combined with
the FSBL and stored as a JIC file in QSPI flash. It can also be created as an SRAM
Object File (SOF) and downloaded via JTAG. This is convenient during development.

The second file is produced as a Raw Binary File (RBF) and contains the FPGA core
logic and /O configuration information. The RBF is placed on the FAT partition of the
SD card. Itis read during the SSBL operation and written to the FPGA.

5.8.1 Create the HPS EMIF 1/0 Configuration SOF file

Create a custom HPS EMIF I/O configuration image, using the Quartus Programming
File Generator. This image includes the FSBL, HPS handoff data and the FPGA
configuration data. It is generated as a SOF file (SRAM Object File) and is downloaded
into the FPGA. This will trigger an FPGA reconfiguration which in turn will begin the
process of booting the HPS.

The instructions can be copied and pasted from the copy and paste guide, a line at a
time, into the shell and executed. Include the line below when cutting and pasting.
The instructions do the following:

e cdtothe GHRD output_files subdirectory
e Create the integrated SOF file

$ cd $TOP_FOLDER/ghrd-socfpga/axe5_eagle ghrd/output_files/

$ quartus_pfg -c axe5_eagle top.sof axe5 eagle top hps.sof -o hps_path=$TOP_FOLDER/u-
boot-socfpga/spl/u-boot-spl-dtb.hex

The following Quartus Programming File Generation option is used
e -0 hps_path points to the location of the FSBL
The following file is generated :

° $TOP_FOLDER/ghrd-
socfpga/axeb_eagle_ghrd/output_files/axe5_eagle_top_hps.sof

I.\N.\E\IV AXES5-Eagle Create a Linux Boot Image

5.8.2 Create the FPGA Core RBF file

Create the FPGA Core RBF image using the Quartus Programming File Generator. This
image includes the FPGA Core logic and I/O configuration data. It is written to the
FAT partition of the SD card.

e Create the RBF file

$ cd $TOP_FOLDER/ghrd-socfpga/axe5_eagle ghrd/output_files/

$ quartus_pfg -c axe5_eagle_top.sof axe5_eagle_top.jic -0 hps=on -0 device=MT25QU02G -o
flash_loader=A5ED065BB32AE5SRO0 -0 hps_path=$TOP_FOLDER/u-boot-socfpga/spl/u-boot-spl-
dtb.hex -o mode=ASX4

The following Quartus Programming File Generation option is used
e -0 hps_path points to the location of the FSBL
The following files are created:
e $TOP_FOLDER/ghrd-socfpga/axe5_eagle_ghrd/output_files/axe5_eagle_top.hps.jic

e $TOP_FOLDER/ghrd-socfpga/axe5_eagle_ghrd/output_files/axe5_eagle_top.core.rbf (rename it to
ghrd.core.rbf)

ASEDO65BB32AE5SSRO
GHRD Compile flash_foader Create RBF & JIC QSPI Flash
Arrow Quartus |_> Quartus: —— axe5_eagle_top.hps.jic
gitHub repo. —> S axe5_eag|e_t0p.sc:L Programming File
Platform Designer) Generator SD Card
u-boot-spl-dtb.hex (FSBL) aXES_?Zﬁlgatgé) ;c:,ore.rbf
ghrd.core.rbf
Figure 5-6 : Create the FPGA Bitstream files
Five Years Out Page | 55 arrow.com

,\M\I AXES5-Eagle Create a Linux Boot Image

5.9 Create the SD Card Image

Intel provides a python utility, make_sdimage_p3.py, that will create a bootable
image, with partitions and content. The instructions can be copied and pasted from
the copy and paste guide, a line at a time, into the shell and executed. Include the line
below when cutting and pasting. The instructions do the following:

The commands below do the following
e create adirectory for collecting the content for the SD card
e download the sdimage_p3.py utility

e copy all the files for deployment to the fatfs and rootfs directories.

$ cd $TOP_FOLDER

$ mkdir sd_card && cd sd_card

$ wget https://releases.rocketboards.org/release/2020.11/gsrd/tools/make_sdimage p3.py
$ # remove mkfs.fat parameter which has some issues on Ubuntu 22.04

$ sed -i 's/\"\-F 32\",//g' make_sdimage p3.py

$ chmod +x make_sdimage_p3.py

$ mkdir fatfs && cd fatfs

$ cp $TOP_FOLDER/ghrd-socfpga/axe5_eagle ghrd/output_files/ghrd.core.rbf .

$ cp $TOP_FOLDER/u-boot-socfpga/u-boot.itb .

$ cp $TOP_FOLDER/linux-socfpga/arch/armé4/boot/Image .

$ cp $TOP_FOLDER/linux-
socfpga/arch/arm64/boot/dts/arrow/socfpga_agilex5 axeb5 eagle.dtb .

$cd..
$ mkdir rootfs && cd rootfs

$ sudo tar xf $TOP_FOLDER/yocto/build/tmp/deploy/images/agilex5/core-image-minimal-
agilex5.rootfs.tar.gz

$cd..

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

e Use the sdimage_p3.py utility to create sdcard.img.

$ sudo python3 make_sdimage_p3.py -f -P fatfs/*,num=1,format=fat32,size=512M -P
rootfs/*,num=2 format=ext3,size=512M -s 1024M -n sdcard.img

$ sudo chmod 777 sdcard.img
$cd..

The file is located at :
e $TOP_FOLDER/sd_card/sdcard.img

5.9.1 Write the SD Card image

The image can be written to an SD card using the dd command in Linux. The
instructions can be copied and pasted from the windows below, a line at a time, into
the shell and executed. The instructions do the following:

Caution. Care must be taken to first identify the drive letter of the SD Card.
Writing an incorrect drive letter can potentially overwrite the contents of the
Virtual Machines hard drive.

Determine the device associated with the SD card on the host. Run the command
below before and after inserting and enabling the the SD card in the VM.

$ cat /proc/partitions
5.9.1.1 Enable the SD Card Adaptor

It is best to use a USB to micro SD card adaptor as they are recognized by VirtualBox.
Use the following steps to make the adaptor available in the VM.

e On the VirtualBox menu bar press Devices - USB and then click on the
adaptor.

Five Years Out Page I 57 arrow.com

N\ROW

4 Agilex 5 Workshop [Running] - Oracle VirtualBox

File Machine View Input Devices Help
Optical Drives
Audio
Network
use

Shared Folders
Shared Clipboard

Drag and Drop

@% oD Ra&E e

Run the command below again. The new drive letter will show up as /dev/sdx/ where
x represents the actual letter (a,b,c,d etc).

$ cat /proc/partitions

Use the dd utility to write the SD image to the SD card. Substitute the letter x with
the actual drive letter discovered above. Then use the sync command to flush the

Upgrade Guest Additions.

Insert Guest Additions CD image...

£ USB Settings...

Intel Corp. [0002]
Dell Computer Corp. [0101]
Dell Computer Corp. [0101]
GEMBIRD [0111]
Western Digital Elements 1088 [1012]
Realtek USB 10/100/1000 LAN [3111]
Realtek Semiconductor Corp. [8264]
GN Audio A/S Jabra EVOLVE 30 Il [0203]
Broadcom Corp. [0101]
Realtek 802.11ac WLAN Adapter [0200]
Generic USB3.0 Card Reader [1539]
CHICONY HP USB Multimedia Keyboard [0100]
Logitech USB Receiver [2001]
FTDI FT230K Basic UART [1000]
' Arrow USB Blaster TEIOD0 [0700]

Vendor ID: 1908
Product ID: 0226

Revisi
State:

changes from memory to the SD card.

15 cat /proc/partitions
major minor #blocks name

4

76028
276244
277748
76056
517212
10976
93888
57454
62914560
1024
62911488
10792
39760
500
31166976
512000
1536000

MNPSOS R WNPE O

)_.‘
@ v

7
7
7
7
7
7
7
7
11
8
8
B
7
7
7
8
B
8

$ sudo dd if=$TOP_FOLDER/sd_card/sdcard.img of=/dev/sdx bs=1M status=progress

$ sudo sync

loop®
loop1l
loop2
loop3
loop4d
loop5s
loopé
loop7
sro
sda
sdal
sda2
loop8
loop9
loop1l
sdb
sdb1
sdb2

0

on: 0111
Busy

—
O
‘
&

AXE5-Eagle Create a Linux Boot Image

el labuser@|

:-$ cat /proc/partitions
major minor #blocks name

4 loop®
76028 loopl
276244 loop2
277748 loop3
76056 loop4d
517212 loop5
10976 loop6
93888 loop7

57454 sr0
62914560 sda

1024 sdal

62911488 sda2
10792 loop8
39760 loop9
500 loopl®

= |

QUENRIENANDEWNEE

I

N\ROW

AXES5-Eagle Create a Linux Boot Image

5.10 Configure the board
The following components are required for the demo:
e AXEb5-Eagle (TEIO185) development board,
e 12VDC 40W power supply
e Arrow-USB-Blaster (TEI-0004-02) for downloading to the FPGA

e 2 x micro-USB Cable (one for the Arrow Blaster, one for the HPS UART)
o 8GB SD card with the sdcard.img

5.10.1 Configure the MSEL DIP Switches

The MSEL2 and MSEL1 DIP switches need to be set to the OFF position (right) for
JTAG Boot selection.

BOOT Selection

7 | JTAG [AS Fast]AS Normal]
[s7amseLi| off | ON | ofF |

5.10.2 Assemble the Hardware

e Insert the SD card in the J24 cage, on the right hand of the board.

Five Years Out

Page | 59

arrow.com

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

o Plug the Arrow-USB-Blaster (TEIO004-02) into J34 with the USB connector facing
to the right.

|
LQ"l;'

+12Vv /A

ATV

e Connect both USB cables to the host computer
e Connect the power supply to the AXE5-Eagle J29 barrel connector
e Plugthe AC-DC adapter into an AC outlet

5.11Connect to the target terminal

e Launch aterminal program (like Tera Term VT or Putty) and connect using serial
port
e Select 115200 baud 8,N,1

e Select the appropriate target COM port

5.12Boot the Linux Image

e When the integrated SOF file has been downloaded the Secure Device Manager
(SDM) will initiate the FPGA configuration process.

e The SDM will read the SOF file. This contains the FPGA image, the HPS configuration
data and the U-boot First Stage Boot Loader (FSBL)

e When the FPGA is configured, the SDM will release the Arm processor cluster in the
Hard Processing System (HPS) from reset.

e The Arm processor cluster then boots U-boot and Linux from the SD card
e The Linux password is root

5.12.1 Enable the Arrow Blaster in the VirtualBox VM

Click on Devices = USB = Arrow USB Blaster to enable the Blaster in the VirtualBox
VM.

https://superuser.com/questions/1059447/how-to-check-com-ports-in-windows-10

AWVV AXE5-Eagle Create a Linux Boot Image

Agilex 5 Warkshop [Running] - Oracle VirtualBox
File Machine View Input Devices Help

@ Optical Drives 3
(B Audio »
& Network »
(9 UsB » @ USE Settings...
0] Shared Folders 3 Intel Corp. [0002]
[Z] Shared Clipboard » Dell Computer Corp. [0101]
B Dragand Drop D Dell Computer Corp. [0101]
< GEMBIRD [0111]
@ Insert Guest Additions CD image... Western Digital Technologies, Inc. Elements Portable (WDBUGY, WDBUZG) [1012]
| | Uyt A s Realtek USB 10/100/1000 LAN [3111]

Realtek Semiconductor Corp. [8264]

GN Audio A/S Jabra EVOLVE 30 Il [0203]
Broadcom Corp. [0101]

Realtek 802.11ac WLAN Adapter [0200]

Generic USB3.0 Card Reader [1539]

CHICONY HP USB Multimedia Keyboard [0100]
Logitech USB Receiver [2901]

FTDI FT230X Basic UART [1000]

Arrow USB Blaster TEIO004 [0700]

5.12.2 Download the FPGA configuration file

The FPGA JTAG chain will expose 1 or 2 endpoints when auto-detected by the
Quartus programmer. Follow the appropriate instructions to program the Agilex 5
FPGA for either scenario.

Determine the number of JTAG devices. In the terminal in VirtualBox type

$ jtagconfig

The jtag chain will respond with one or two devices in the chain. An example of each is
shown below

One JTAG device
1) Arrow-USB-Blaster [ARA31601-TEIO004]
0364FODD A5E(CO065BB32AR0|D065BB32AR0)

Two JTAG devices

1) Arrow-USB-Blaster [ARA31601-TEIO004]
4BA06477 ARM_CORESIGHT_SOC_600
0364FODD AB5E(CO65BB32AR0|D065BB32AR0)

Five Years Out Page I 61 arrow.com

,\.IWVV AXE5-Eagle Create a Linux Boot Image

5.12.2.1 Download the SOF file

The instructions can be copied and pasted from the copy and paste guide, a line at a
time, into the shell and executed.

e cdto the output files directory
$ cd $TOP_FOLDER/ghrd-socfpga/axe5_eagle ghrd/output_files/

Option 1: One Device
quartus_pgm -c 1-m jtag —o "p;axe5_eagle_top_hps.sof@1"

Option 2: Two Devices

quartus_pgm -c 1-m jtag -o "p;axe5_eagle_top_hps.sof@2"

5.13 View the Linux Boot Log

The HPS is released from reset by the SDM and the boot process begins with the
FSBL. A snapshot of the initial boot log is shown below.

I\.IWVV AXE5-Eagle Create a Linux Boot Image

¥ COMT - Tera Term WT = (] *
File Edit Setup Ceontrol Window Help

—Boot SPL 2825 _81-—g98f386deB8?F59-dirty (May 23 2825 - B6:33:32 -B8488>
Rezet state: Col
kH=z

kHz
kHz
kHz
kHz
kHz
iz_ddr_csr_clkgen_locked: ddr csr io?6b_BA clkgenfA iz successfully locked
io?bb_cal_status: Calibration for I096B instance Bx18480488 done at @A msec?
init_mem_cal: Initial DDR calibration I096B_8 succeed
Calibration success

init: get memory interface I096B A

I1096B @ mem_interface B: ip_type_ret: Bxl
I076B O mem_interface B: instance_id_ret: BxA
mh 10968 B: num_men_interface: Bxl
LPDDR4:= 16824 MiB
ecc_enable_status: ECC enable status:
DDR: size check success

init success
loblizt at 728008 not found {err=—2>
Mot starting watchdogllB8d08200

rying to hoot from MMC1

H## Checking hash{es?» for config board-8 ... OK

it Checking hash{es?» for Image atf ... crc3i2+ OK

Checking hash<es?» for Image whoot ... crci2+ OK
hash{es> for Image fdt-8 ... crciZ+ QK

Click on the link below to view a complete Boot Log of Linux on the AXE5-Eagle
board

e AXE5-Eagle board Linux Boot Log

Five Years Out Page I 63 arrow.com

https://github.com/ArrowElectronics/Agilex-5/wiki/Boot-log-25-1

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

5.14Turn RGB LEDs On and Off

This section explains how FPGA peripherals can be connected to the HPS and where
they are located in the HPS memory map. Accessing FPGA connected LEDs are an
example of this.

Four RGB LEDs are directly connected to the FPGA. This is shown in the figure below.

33v
CK125 LEDOR

intel

AGILEX

5

Each RGB LED is connected to a 3 bit PIO peripheral in the FPGA. These PIOs are
located in the peripheral_subsystem in the GHRD. The peripheral_subsystem is
connected to the HPS memory map via the Lightweight HPS to FPGA (LWHZ2F) bridge.

The LWHZ2F bridge is mapped at offset 0x20000000 within the HPS memory map

S12ZMBLWHPS2EPGA | 4,00 2000 0000

47 MB Reserved (Error Generated)

0x00_1010_0000

TMB GIC Regs 0x00_1000_0000

16 MB CCU (Ncore) Regs___| 0x00_1C00_0000

64 MB MPFE Regs 0x00_1800_0000
128 MB PSS Periphs

0x00_1000_0000

2555 MB Reserved (Error Generated)| 0x00_0008_0000
512 KB OCRAM 0x00_0000_0000

I.\N.\E\IV AXES5-Eagle Create a Linux Boot Image

The peripheral_subsystem, within the GHRD, is mapped at address 0Ox08000000 on
the FPGA side of the bridge.

B K hps_subsystem lhps_system
o = emif_bank3a_hps_emif_mem_0 iCondluit emif_bank3a_hps_emif _...
< = emif_bank3a_hps_emif_oct_0 iConduit emif_bank3a_hps_emif _...
— |AX14 Manager [clk]
F =& Iwhps2fpga | AX14 Manager [clk]
<A (Conduit emacl_mdio
<n B= emacl (Conduit emacl
o = spim0 iConcluit spimt
<A = i2cl (Conduit i2e1
o - hps_o iConduit hps_io
o »= ush3l_io iConduit usb31_io
— -4 fpgaZhps_interrupt Interrupt Receiver IRG 0
<A »= irtel_agilex_5_soc_0_ush31_phy_rx_s... [Concluit usbd1_phy_rx_serial_n
<A B= irtel_agilex_5_soc_0_ush31_phy_rx_s... [Concluit usb31_phy_rx_serial_p
o »= intel_agilex_5_soc_0_ush31_phy_tx_s... [Conduit usb31_phy_tx_serial_n
ey »= intel_agilex_5_soc_0_ush31_phy_tx_s... [Conduit usb31_phy_tx_serial_p
C B= irtel_agilex_S_soc_0_ush31_phy_reco... [Avalon Memory Mapped Agent usb31_phy_reconfig_slave |[intel_agilex_...
— = f2sdram_bridge \valon Memory Mapped Agent k] 0x0000_o000
B 1 emif_subsystem lemif_subsystem
o »= emif_bank2a_fpga_mem_0 \Conduit emif_bank2a_fpga_mem_0|
o W= emif_bank2a_fpga_oct_0 iConduit emif_bank2a_fpga_oct_0
W= emif_ipga_bridge \&x14 Subordinate [sys_clk] 0x0000_0000
B £k fpga_only_master JUTAG to Avalon Master Bridge Intel FPGA IP
=& master \&valon Memory Mapped Host [clk]
B i peripheral_subsystem peripheral_sys
< = dipsw iConduit dipsw
= dipsw_irg lIterrupt Sendler [clk]
. B= mm_peripheral_bridge_s0 \mvalon Memory Mapped Agent [clk]

A review of the peripheral_subsystem reveals the local addresses of the rgb_led PIO

peripherals.
Conne... Mame Description Export Clock Base
= £ mm_bridge |Avalon Memory Mapped Pipeline Bridge Int...
o B= =0 Avalon Memory Mapped Agent mm_peripheral_bridge_si |[clk]
— =& mi Avalon Memory Mapped Host [clk]
B LF sys_id System ID Peripheral Intel FPGA IP
= control_slave Avalon Memory Mapped Agent [clk] @ o0x0ooo0
B LF pb P10 (Parallel 1/0) Intel FPGA IP
= sl Avalon Memory Mapped Agent [clk] @ 0x0010
< B= external_connection Concluit pbh
= B=irg Interrupt Sender pb_irg [clk]
B I dipsw P10 (Parallel 110} Intel FPGA IP
= =1 Avalon Memory Mapped Agent [clk] & o0x00Z0
T B= external_connection Conduit dipsw
[y = irg Interrupt Sencler dipsw_irg [clk]
B LEr P10 (Parallel 1/0) Intel FPGA IP
| Avalon Memory Mapped Agent [clk] 0x0020
< B= external_connection Conduit rgb_ledd
E I rab_ledt P10 (Parallel 1/0) Intel FPGA IP
B= = Avalon Memory Mapped Agent [clk] 0x0040
T B= cxternal_connection Concluit rgb_led1
= w P10 (Parallel 1/0) Intel FPGA IP
= sl Avalon Memory Mapped Agent [clk] 0x0050
T B= external_connection Conduit rgb_led2
= rgb_led3 P10 (Parallel 1/0) Intel FPGA IP
w Avalon Memaory Mapped Agent [clk] 0x00E0
2 B= cxternal_connection Conduit rgb_led3

Five Years Out Page I 65 arrow.com

AWVV AXE5-Eagle Create a Linux Boot Image

To calculate the addresses of the LED PIOs from the HPS add the LWHZ2F bridge
address (0x20000000), the address of the peripheral_subsystem (0x08000000) and
the individual LED PIO (0x30, 0x40, Ox50 or 0x60) addresses. This results in the
following addresses

RGB_LEDO 0x28000030
RGB_LED1 0x28000040
RGB_LED2 0x28000050
RGB_LED3 0x28000060

Each PIO has three output bits. The red LED is connected to bit2, the green LED to
bit1 and the blue LED to bitO. A zero will turn the LED on and a one will turn it off.

5.14.1 Access the LEDS from Linux using devmem?2

Physical addresses in hardware can be directly read or written from Linux user space
using the devmem?2 package.

e Press enter in the Putty or Tera Term terminal.

e Typeroot when prompted for the password

5.14.1.1 Turn on RGB_LED2

[lluminate RGB_LED?2 -red

$ devmem2 0x28000050 w 0x03
[lluminate RGB_LED?Z2 - green

$ devmem2 0x28000050 w 0x05
[lluminate RGB_LED?Z - blue

$ devmem2 0x28000050 w 0x06
Turn off RGB_LED?2

S devmem?2 0x28000050 w 0x07

5.14.2 Specify each LED in Linux as a device

The LEDs are typically addressed as devices from a user space application or from
the command line in a shell. The Linux kernel has a device class for LEDs that allows
user space to control them. The LED class includes the following features:

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

e LED brightness. The brightness of an LED is represented as an integer
value. For LEDs connected to PWM signals, this value directly controls the
brightness. For LEDs connected to GPIOs, a brightness of O is off and any other
value is on.

e LED directory. LEDs appear in the directory /sys/class/leds/.

e LED mapping. GPIOs that are connected directly to LEDs are registered
through the Linux LED class sysfs interface. The devicetree can be used to
map GPIOs to LEDs, and to define their logic level.

5.14.3 Defining the RGB LEDs as devices on the AXE5-Eagle board

Two steps are required to enable the RGB LEDs as devices when building the
embedded Linux kernel.

e Specify the PIOs and LEDS in the devicetree.
e Include and enable the PIO and LED drivers when building the Linux kernel.

5.14.3.1 Examine the AXE5-Eagle devicetree

First examine the sections of the devicetree that define the PIOs. The devicetree is
parsed by the Linux kernel at boot time. The devicetree information for that
peripheral is passed, at boot time, to the specified device driver.

RGB_LEDZ is connected to the rgb_led2 PIO in the peripheral subsystem. This is
defined on line 54 in the AXE5-Eagle devicetree. This entry declares a number of
important issues.

e line 54, the name of the PIO as led_pio2 and its associated FPGA address,
0x08000050

e line 55, the name of the associated Linux device driver, altr,pio-1.0
e line 57, the width, in bits of the PIO device

246 led_pio2: led-pio2@leseeesse {

247 compatible = "altr,pio-1.8";

248 reg = <0x00000001 0x08080050 ©Ox10>;
249 altr,ngpio = <3>;

258 #gpio-cells = <2>;

251 gpio-controller;

252 HH

The altr,pio-1.0 driver bindings are described in the following Linux documentation.

Five Years Out Page I 67 arrow.com

https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.12.11-lts/arch/arm64/boot/dts/arrow/socfpga_agilex_ghrd.dtsi#L54
https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.12.11-lts/drivers/gpio/gpio-altera.c#L328
https://www.kernel.org/doc/Documentation/devicetree/bindings/gpio/gpio-altera.txt

I.\N.\EVV AXE5-Eagle Create a Linux Boot Image

Now that led_pio2 has been declared it can be referenced when declaring associated
RGB LED devices. Linux declares a specific GPIO device and driver for LEDs. This is
referred to in the leds section of the devicetree. The devicetree binding for this driver
is described in the following Linux documentation.

Note how each bit of the associated PIO, led_pio2 is declared as an individual device
(eg. fpga2_led_red, fpga_led2_blue, fpgal_led_green).

69 fpga2_led red {

70 label = "fpga_led2_red";
71 gpios = <&led pio2 2 1>;
7 }; e
73

74 fpga2_led_gresp {

75 label = "fpga_led2_green”;
76 gpios = <&lad E%22 1 1>;
77 b

78

79 fpga2_led_blue {

80 —-_]_a;:;_: "fpga_led2_blue”;
81 gpios = <&led_pio2 8 1>;
o Vs e

5.14.3.2 Examine the AXE5-Eagle Linux defconfig

It has been discussed that two linux devices are required in order to achieve the goal
of addressing individual RGB LEDs as devices from the Linux prompt. It has already
been noted how they are declared in the devicetree. Their associated drivers must be
declared in the Linux defconfig file to ensure that they are available at Linux boot
time.

The PIO peripheral is declared in the config fragment by the following lines of text.
e Line 2, CONFIG_GPIO_ALTERA

The LEDS GPIO peripheral is declared in the defconfig by the following lines of text.
e Line 1182, CONFIG_LEDS_GPIO

https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.12.11-lts/arch/arm64/boot/dts/arrow/socfpga_agilex_ghrd.dtsi#L73
https://www.kernel.org/doc/Documentation/devicetree/bindings/leds/leds-gpio.txt
https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.12.11-lts/config-fragment-eagle#L2
https://github.com/ArrowElectronics/linux-socfpga/blob/socfpga-6.12.11-lts/arch/arm64/configs/defconfig#L1182

I\.IWVV AXE5-Eagle Create a Linux Boot Image

5.14.4 Access the LEDS from Linux as devices

The LED devices can be viewed by entering the following command from the Linux
prompt.

$ 1ls /sys/class/devices

The FPGA RGB LEDs that were declared in the devicetree are listed as individual
devices. There are two additional LEDS listed that were also declared in the
devicetree, hps_led0 and hps_led1. They are wired to PIOs in the HPS portion of the
Agilex SoC FPGA.

e [lluminate RGB_LED?Z2 -red
$ echo 1 > /sys/class/leds/fpga led2 red/brightness

e Turn off RGB_LED2 -red
$ echo 0 > /sys/class/leds/fpga led2 red/brightness

e [lluminate RGB_LEDO -blue
$ echo 1 > /sys/class/leds/fpga led0 blue/brightness

e Turn off RGB_LEDO - blue
$ echo 0 > /sys/class/leds/fpga led0 blue/brightness

e TurnonHPS_LEDO

$ echo 1 > /sys/class/leds/hps ledO/brightness

e Turn off HPS_LEDO
$ echo 0 > /sys/class/leds/hps led0/brightness

Five Years Out Page I 69 arrow.com

,\m\l AXES5-Eagle Create a Linux Boot Image

6 Additional Resources

Learn the architecture — Aarch64 Exception

Learn the architecture — TrustZone for Aarch64

Hard Processor System Technical Reference Manual

Hard Processor System Booting User Guide: Agilex 5 SoCs

Device Configuration User Guide: Agilex 5 FPGAs and SoCs

Arrow AXE5-Eagle Development Platform

Command-Lline Linux Reference Design

Golden Hardware Reference Design

CONGRATULATIONS! YOU HAVE SUCCESSFULLY COMPLETED
Creating a Linux Boot Image

https://developer.arm.com/documentation/102412/latest/
https://developer.arm.com/documentation/102418/latest/
https://www.intel.com/content/www/us/en/docs/programmable/814346/24-1/hard-processor-system-technical-reference.html
https://cdrdv2-public.intel.com/813763/ug-813762-813763.pdf
https://www.intel.com/content/www/us/en/docs/programmable/813773/24-2/device-configuration-user-guide-fpgas.html
https://github.com/ArrowElectronics/Agilex-5/wiki/Agilex-5-E-Series-AXE5-Eagle-Development-Platform
https://github.com/ArrowElectronics/Agilex-5/wiki/Command-Line-Linux-25.1
https://github.com/ArrowElectronics/Agilex-5/wiki/The-Golden-Hardware-Reference-Design-25.1

NWVV AXE5-Eagle Create a Linux Boot Image

7 Legal Disclaimer

ARROW ELECTRONICS
EVALUATION BOARD LICENSE AGREEMENT

By using this evaluation board or kit (together with all related software, firmware, components,
and documentation provided by Arrow, “Evaluation Board”), You (“You”) are agreeing to be bound by
the terms and conditions of this Evaluation Board License Agreement (“Agreement”). Do not use the
Evaluation Board until You have read and agreed to this Agreement. Your use of the Evaluation Board
constitutes Your acceptance of this Agreement.

PURPOSE

The purpose of this evaluation board is solely intended for evaluation purposes. Any use of the
Board beyond these purposes is on your own risk. Furthermore, according the applicable law, the
offering Arrow entity explicitly does not warrant, guarantee or provide any remedies to you with regard
to the board.

LICENSE

Arrow grants You a non-exclusive, limited right to use the enclosed Evaluation Board offering
limited features only for Your evaluation and testing purposes in a research and development setting.
Usage in a live environment is prohibited. The Evaluation Board shall not be, in any case, directly or
indirectly assembled as a part in any production of Yours as it is solely developed to serve evaluation
purposes and has no direct function and is not a finished product.

EVALUATION BOARD STATUS

The Evaluation Board offers limited features allowing You only to evaluate and test purposes.
The Evaluation Board is not intended for consumer or household use. You are not authorized to use the
Evaluation Board in any production system, and it may not be offered for sale or lease, or sold, leased
or otherwise distributed for commercial purposes.

OWNERSHIP AND COPYRIGHT

Title to the Evaluation Board remains with Arrow and/or its licensors. This Agreement does not
involve any transfer of intellectual property rights (“IPR) for evaluation board. You may not remove any
copyright or other proprietary rights notices without prior written authorization from Arrow or it licensors.

RESTRICTIONS AND WARNINGS

Before You handle or use the Evaluation Board, You shall comply with all such warnings and
other instructions and employ reasonable safety precautions in using the Evaluation Board. Failure to
do so may result in death, personal injury, or property damage.

You shall not use the Evaluation Board in any safety critical or functional safety testing,
including but not limited to testing of life supporting, military or nuclear applications. Arrow expressly
disclaims any responsibility for such usage which shall be made at Your sole risk.

WARRANTY

Arrow warrants that it has the right to provide the evaluation board to you. This warranty is
provided by Arrow in lieu of all other warranties, written or oral, statutory, express or implied, including
any warranty as to merchantability, non-infringement, fithess for any particular purpose, or uninterrupted
or error-free operation, all of which are expressly disclaimed. The evaluation board is provided “as is”
without any other rights or warranties, directly or indirectly.

You warrant to Arrow that the evaluation board is used only by electronics experts who
understand the dangers of handling and using such items, you assume all responsibility and liability for
any improper or unsafe handling or use of the evaluation board by you, your employees, affiliates,
contractors, and designees.

LIMITATION OF LIABILITIES

Five Years Out Page I n arrow.com

NWV\I AXE5-Eagle Create a Linux Boot Image

In no event shall Arrow be liable to you, whether in contract, tort (including negligence), strict
liability, or any other legal theory, for any direct, indirect, special, consequential, incidental, punitive, or
exemplary damages with respect to any matters relating to this agreement. In no event shall arrow’s
liability arising out of this agreement in the aggregate exceed the amount paid by you under this
agreement for the purchase of the evaluation board.

IDENTIFICATION

You shall, at Your expense, defend Arrow and its Affiliates and Licensors against a claim or
action brought by a third party for infringement or misappropriation of any patent, copyright, trade secret
or other intellectual property right of a third party to the extent resulting from (1) Your combination of the
Evaluation Board with any other component, system, software, or firmware, (2) Your modification of the
Evaluation Board, or (3) Your use of the Evaluation Board in a manner not permitted under this
Agreement. You shall indemnify Arrow and its Affiliates and Licensors against and pay any resulting
costs and damages finally awarded against Arrow and its Affiliates and Licensors or agreed to in any
settlement, provided that You have sole control of the defense and settlement of the claim or action,
and Arrow cooperates in the defense and furnishes all related evidence under its control at Your
expense. Arrow will be entitled to participate in the defense of such claim or action and to employ
counsel at its own expense.

RECYCLING

The Evaluation Board is not to be disposed as an urban waste. At the end of its life cycle,
differentiated waste collection must be followed, as stated in the directive 2002/96/EC. In all the
countries belonging to the European Union (EU Dir. 2002/96/EC) and those following differentiated
recycling, the Evaluation Board is subject to differentiated recycling at the end of its life cycle, therefore:
It is forbidden to dispose the Evaluation Board as an undifferentiated waste or with other domestic
wastes. Consult the local authorities for more information on the proper disposal channels. An incorrect
Evaluation Board disposal may cause damage to the environment and is punishable by the law.

	1 Introduction
	1.1 Readers Guide
	1.2 Definitions

	2 Getting Started
	3 Agilex™ 5 SoC FPGAs
	3.1 Agilex 5 Family of Devices
	3.1.1 E Series, Group B
	3.1.2 E Series, Group A
	3.1.3 D Series

	3.2 Agilex™ 5 SoC FPGA Architecture
	3.2.1 The Secure Device Manager (SDM)
	3.2.2 MPU Cluster
	3.2.3 HPS/FPGA Bridges

	3.3 AXE5-Eagle Golden System Reference Design (GSRD)
	3.4 AXE5-Eagle Golden Hardware Reference Design (GHRD)
	3.5 Agilex 5 SoC FPGA Boot Overview
	3.5.1 FPGA Configuration First Mode
	3.5.2 HPS Boot First Mode
	3.5.3 FPGA Configuration First Mode – Detail
	3.5.3.1 Power-On Reset (POR)
	3.5.3.2 Secure Device Manager
	3.5.3.3 First-Stage Bootloader
	3.5.3.4 Second-Stage Bootloader
	1.1.1.1
	3.5.3.5 Operating System
	3.5.3.6 Application

	3.6 System Layout for HPS Boot First Mode
	3.6.1 Dual Flash System

	3.7 The HPS Boot Flow
	3.8 The HPS Boot Sequence
	3.8.1 Exception Levels
	3.8.2 Arm Trustzone
	3.8.2.1 Normal and Trusted worlds
	3.8.2.2 Secure and Non-secure states
	3.8.2.3 Switching between Secure States

	3.8.3 Arm Trusted Firmware (ATF), Boot Loader Stage 3-1 (BL31)
	3.8.3.1 Architectural initialization
	3.8.3.2 Platform initialization

	4 HPS Customization
	4.1 HPS FPGA Interfaces
	4.1.1 FPGA to SDRAM Bridge (F2SDRAM)
	4.1.2 Lightweight HPS to FPGA Bridge (LWH2F)
	4.1.3 HPS to FPGA Bridge (H2F)
	4.1.4 FPGA to HPS Bridge (F2H)

	4.2 HPS Clocks, Resets, Power
	4.2.1 Input Clocks
	4.2.2 PLL Clocks
	4.2.3 Power & Resets

	4.3 Pin Mux and Peripherals
	4.3.1 Advanced IP Placement
	4.3.2 Advanced FPGA Placement

	5 Creating a Bootable Image
	5.1 Code repositories
	5.2 Launch the Oracle VirtualBox Linux Virtual Machine
	5.2.1 Launch the VirtualBox based Ubuntu 22.04 LTS Virtual Machine.
	5.2.2 Copy and paste guide
	5.2.3 Host password
	5.2.4 VirtualBox Menu Bar

	5.3 Setup the build environment
	5.4 Arm Trusted Firmware (BL31)
	5.5 U-boot
	5.5.1 defconfig
	5.5.2 Devicetree
	5.5.3 Compile U-boot

	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	5.6 Linux
	5.6.1 defconfig
	5.6.2 Devicetree
	5.6.3 Compile Linux

	5.7 Create a Linux Root File System (rootfs) with Yocto
	5.8 Create the FPGA Configuration Bitstream Images
	5.8.1 Create the HPS EMIF I/O Configuration SOF file
	5.8.2 Create the FPGA Core RBF file

	5.9 Create the SD Card Image
	5.9.1 Write the SD Card image
	5.9.1.1 Enable the SD Card Adaptor

	5.10 Configure the board
	5.10.1 Configure the MSEL DIP Switches
	5.10.2 Assemble the Hardware

	5.11 Connect to the target terminal
	1.1
	5.12 Boot the Linux Image
	5.12.1 Enable the Arrow Blaster in the VirtualBox VM
	5.12.2 Download the FPGA configuration file
	5.12.2.1 Download the SOF file

	5.13 View the Linux Boot Log
	5.14 Turn RGB LEDs On and Off
	5.14.1 Access the LEDS from Linux using devmem2
	5.14.1.1 Turn on RGB_LED2

	5.14.2 Specify each LED in Linux as a device
	5.14.3 Defining the RGB LEDs as devices on the AXE5-Eagle board
	5.14.3.1 Examine the AXE5-Eagle devicetree
	5.14.3.2 Examine the AXE5-Eagle Linux defconfig

	5.14.4 Access the LEDS from Linux as devices

	1
	6 Additional Resources
	7 Legal Disclaimer

